版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆廣西壯族自治區(qū)百色市田陽縣田陽高中高一下數(shù)學(xué)期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從甲、乙、丙三人中,任選兩名代表,甲被選中的概率為()A. B. C. D.2.已知點在第三象限,則角的終邊在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.設(shè)為中的三邊長,且,則的取值范圍是()A. B.C. D.4.直線與直線平行,則()A. B.或 C. D.或5.點M(4,m)關(guān)于點N(n,-3)的對稱點為P(6,-9)則()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.7.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達(dá)式是()A. B.C. D.8.已知等差數(shù)列{an}的前n項和為,滿足S5=S9,且a1>0,則Sn中最大的是()A. B. C. D.9.若,,則與的夾角為()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,若輸入的a,b的值分別為1,1,則輸出的是()A.29 B.17 C.12 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.有6根細(xì)木棒,其中較長的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長的棱所在的直線所成的角的余弦值為.12.明代程大位《算法統(tǒng)宗》卷10中有題:“遠(yuǎn)望巍巍塔七層,紅燈點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”則尖頭共有__________盞燈.13.將邊長為1的正方形(及其內(nèi)部)繞旋轉(zhuǎn)一周形成圓柱,點?分別是圓和圓上的點,長為,長為,且與在平面的同側(cè),則與所成角的大小為______.14.已知函數(shù),對于上的任意,,有如下條件:①;②;③;④.其中能使恒成立的條件序號是__________.15.若正四棱錐的底面邊長為,側(cè)棱長為,則該正四棱錐的體積為______.16.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別是,且滿足.(1)求角的大??;(2)若,邊上的中線的長為,求的面積.18.已知,且,向量,.(1)求函數(shù)的解析式,并求當(dāng)時,的單調(diào)遞增區(qū)間;(2)當(dāng)時,的最大值為5,求的值;(3)當(dāng)時,若不等式在上恒成立,求實數(shù)的取值范圍.19.某中學(xué)高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是1.(1)求出x,y的值,且分別求甲、乙兩個班中5名學(xué)生成績的方差、,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個班的學(xué)生參加決賽?(2)從成績在85分及以上的學(xué)生中隨機抽取2名.求至少有1名來自甲班的概率.20.某高校在2012年的自主招生考試成績中隨機抽取名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.組號分組頻數(shù)頻率第1組5第2組①第3組30②第4組20第5組10(1)請先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.21.已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若,證明:函數(shù)必有局部對稱點;(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)的取值范圍;(3)若函數(shù)在上有局部對稱點,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
采用列舉法寫出總事件,再結(jié)合古典概型公式求解即可【詳解】被選出的情況具體有:甲乙、甲丙、乙丙,甲被選中有兩種,則故選:D2、B【解析】
根據(jù)同角三角函數(shù)間基本關(guān)系和各象限三角函數(shù)符號的情況即可得到正確選項.【詳解】因為點在第三象限,則,,所以,則可知角的終邊在第二象限.故選:B.【點睛】本題考查各象限三角函數(shù)符號的判定,屬基礎(chǔ)題.相關(guān)知識總結(jié)如下:第一象限:;第二象限:;第三象限:;第四象限:.3、B【解析】
由,則,再根據(jù)三角形邊長可以證得,再利用不等式和已知可得,進(jìn)而得到,再利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,求得函數(shù)的最小值,即可求解.【詳解】由題意,記,又由,則,又為△ABC的三邊長,所以,所以,另一方面,由于,所以,又,所以,不妨設(shè),且為的三邊長,所以.令,則,當(dāng)時,可得,從而,當(dāng)且僅當(dāng)時取等號.故選B.【點睛】本題主要考查了解三角形,綜合了函數(shù)和不等式的綜合應(yīng)用,以及基本不等式和導(dǎo)數(shù)的應(yīng)用,屬于綜合性較強的題,難度較大,著重考查了分析問題和解答問題的能力,屬于難題.4、B【解析】
兩直線平行,斜率相等;按,和三類求解.【詳解】當(dāng)即時,兩直線為,,兩直線不平行,不符合題意;當(dāng)時,兩直線為,兩直線不平行,不符合題意;當(dāng)即時,直線的斜率為,直線的斜率為,因為兩直線平行,所以,解得或,故選B.【點睛】本題考查直線平行的斜率關(guān)系,注意斜率不存在和斜率為零的情況.5、D【解析】因為點M,P關(guān)于點N對稱,所以由中點坐標(biāo)公式可知.6、B【解析】試題分析:由正弦定理得31考點:正弦定理的應(yīng)用7、D【解析】
根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點的坐標(biāo)求得,由此求得函數(shù)的解析式.【詳解】由題圖可知,且即,所以,將點的坐標(biāo)代入函數(shù),得,即,因為,所以,所以函數(shù)的表達(dá)式為.故選D.【點睛】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.8、B【解析】
由S5=S9可得a7+a8=0,再結(jié)合首項即可判斷Sn最大值【詳解】依題意,由S5=S9,a1>0,所以數(shù)列{an}為遞減數(shù)列,且S9-S5=a6+a7+a8+a9=2(a7+a8)=0,即a7+a8=0,所以a7>0,a8<0,所以則Sn中最大的是S7,故選:B.【點睛】本題考查等差數(shù)列Sn最值的判斷,屬于基礎(chǔ)題9、A【解析】
根據(jù)平面向量夾角公式可求得,結(jié)合的范圍可求得結(jié)果.【詳解】設(shè)與的夾角為,又故選:【點睛】本題考查平面向量夾角的求解問題,關(guān)鍵是熟練掌握兩向量夾角公式,屬于基礎(chǔ)題.10、B【解析】
根據(jù)程序框圖依次計算得到答案.【詳解】結(jié)束,輸出故答案選B【點睛】本題考查了程序框圖的計算,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
分較長的兩條棱所在直線相交,和較長的兩條棱所在直線異面兩種情況討論,結(jié)合三棱錐的結(jié)構(gòu)特征,即可求出結(jié)果.【詳解】當(dāng)較長的兩條棱所在直線相交時,如圖所示:不妨設(shè),,,所以較長的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時較長的兩條棱所在直線所成角的余弦值為;當(dāng)較長的兩條棱所在直線異面時,不妨設(shè),,則,取CD的中點為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以O(shè)A+OB<AB,不能構(gòu)成三角形。所以此情況不存在。故答案為:.【點睛】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結(jié)構(gòu)特征即可,屬于??碱}型.12、1【解析】
依題意,這是一個等比數(shù)列,公比為2,前7項和為181,由此能求出結(jié)果.【詳解】依題意,這是一個等比數(shù)列,公比為2,前7項和為181,∴181,解得a1=1.故答案為:1.【點睛】本題考查等比數(shù)列的首項的求法,考查等比數(shù)列的前n項和公式,是基礎(chǔ)題.13、【解析】
畫出幾何體示意圖,將平移至于直線相交,在三角形中求解角度.【詳解】根據(jù)題意,過B點作BH//交弧于點H,作圖如下:因為BH//,故即為所求異面直線的夾角,在中,,在中,因為,故該三角形為等邊三角形,即:,在中,,,且母線BH垂直于底面,故:,又異面直線夾角范圍為,故,故答案為:.【點睛】本題考查異面直線的夾角求解,一般解決方法為平移至直線相交,在三角形中求角.14、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函數(shù),∴g(x)圖象關(guān)于y軸對稱,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函數(shù),在[﹣,0)是減函數(shù),故③x1>|x2|;④時,g(x1)>g(x2)恒成立,故答案為:③④.點睛:此題考查的是函數(shù)的單調(diào)性的應(yīng)用;已知表達(dá)式,根據(jù)表達(dá)式判斷函數(shù)的單調(diào)性,和奇偶性,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反,根據(jù)單調(diào)性的定義可知,增函數(shù)自變量越大函數(shù)值越大,減函數(shù)自變量越大函數(shù)值越小。15、4.【解析】
設(shè)正四棱錐的高為PO,連結(jié)AO,在直角三角形POA中,求得高,利用體積公式,即可求解.【詳解】由題意,如圖所示,正四棱錐P-ABCD中,AB=,PA=設(shè)正四棱錐的高為PO,連結(jié)AO,則AO=,在直角三角形POA中,,∴.【點睛】本題主要考查了正棱錐體積的計算,其中解答中熟記正棱錐的性質(zhì),以及棱錐的體積公式,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力.16、【解析】因為圓心坐標(biāo)與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先后利用正弦定理余弦定理化簡得到,即得B的大??;(2)設(shè),則,所以,利用余弦定理求出m的值,再求的面積.【詳解】解:(1)因為,由正弦定理,得,即.由余弦定理,得.因為,所以.(2)因為,所以.設(shè),則,所以.在中,由余弦定理得,得,即,整理得,解得.所以.【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形的面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.18、(1),單調(diào)增區(qū)間為;(2)或;(3).【解析】試題分析:(Ⅰ)化簡,解不等式求得的范圍即得增區(qū)間(2)討論a的正負(fù),確定最大值,求a;(3)化簡絕對值不等式,轉(zhuǎn)化在上恒成立,即,求出在上的最大值,最小值即得解.試題解析:(1)∵∴∴單調(diào)增區(qū)間為(2)當(dāng)時,若,,∴若,,∴∴綜上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范圍.點睛:本題考查了平面向量的數(shù)量積的應(yīng)用,三角函數(shù)的單調(diào)性與最值,三角函數(shù)的化簡,恒成立問題的處理及分類討論的數(shù)學(xué)思想,綜合性強.19、(3)甲班參加;(4).【解析】
試題分析:(3)由題意知求出x=5,y=4.從而求出乙班學(xué)生的平均數(shù)為83,分別求出S34和S44,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應(yīng)該選派甲班的學(xué)生參加決賽.(4)成績在85分及以上的學(xué)生一共有5名,其中甲班有4名,乙班有3名,由此能求出隨機抽取4名,至少有3名來自甲班的概率.試題解析:(3)甲班的平均分為,易知.;又乙班的平均分為,∴;∵,,說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.(4)分及以上甲班有人,設(shè)為;乙班有人,設(shè)為,從這人中抽取人的選法有:,共種,其中甲班至少有名學(xué)生的選法有種,則甲班至少有名學(xué)生被抽到的概率為.考點:3.古典概型及其概率計算公式;4.莖葉圖.20、(1)人,,直方圖見解析;(2)人、人、人;(3).【解析】
(1)由頻率分布直方圖能求出第組的頻數(shù),第組的頻率,從而完成頻率分布直方圖.(2)根據(jù)第組的頻數(shù)計算頻率,利用各層的比例,能求出第組分別抽取進(jìn)入第二輪面試的人數(shù).(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,利用列舉法能出所有基本事件及滿足條件的基本事件的個數(shù),利用古典概型求得概率.【詳解】(1)①由題可知,第2組的頻數(shù)為人,②第組的頻率為,頻率分布直方圖如圖所示,
(2)因為第組共有名學(xué)生,所以利用分層抽樣在名學(xué)生中抽取名學(xué)生進(jìn)入第二輪面試,每組抽取的人數(shù)分別為:第組:人,第組:人,第組:人,所以第組分別抽取人、人、人進(jìn)入第二輪面試.(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,則從這六位同學(xué)中抽取兩位同學(xué)有種選法,分別為:,,,,,,,,,,,,,,,其中第組的位同學(xué)中至少有一位同學(xué)入選的有種,分別為:,,,∴第組至少有一名學(xué)生被考官面試的概率為.【點睛】本題考查頻率分直方圖、分層抽樣的應(yīng)用,考查概率的求法,考查數(shù)據(jù)處理能力、運算求解能力,是基礎(chǔ)題.21、(1)見解析;(2);(3)【解析】
試題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2施工工藝控制標(biāo)準(zhǔn)圖示-電儀篇
- 財務(wù)會計知識點
- 石河子大學(xué)《體能訓(xùn)練理論與方法》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《平面設(shè)計基礎(chǔ)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《教育研究方法》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《體育》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《機械制造技術(shù)基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《高級人工智能》2021-2022學(xué)年期末試卷
- 關(guān)于向政府請示履行合同的請示書
- 國外銷售藥品合同
- 天氣學(xué)原理試題庫(含答案)
- 部編版二年級上冊道德與法治教案(完整版)
- 消化道出血課件
- 塑膠產(chǎn)品QC工程圖
- 建立自己的文件夾
- 無錫諾宇醫(yī)藥科技有限公司生產(chǎn)、研發(fā)及銷售放射性藥物項目環(huán)境影響報告
- 辦公樓消防改造方案
- MODAN6000低壓開關(guān)柜安裝使用說明書
- 圍產(chǎn)期母嬰感染B族鏈球菌的防治及專家共識防治指南PPT課件院內(nèi)培訓(xùn)
- 木材名稱對照表
- 拉波夫敘事結(jié)構(gòu)助力讀后續(xù)寫高考真題講義-高三英語二輪復(fù)習(xí)寫作專項
評論
0/150
提交評論