版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省開遠一中高一下數(shù)學期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.2.若三個球的半徑的比是1:2:3,則其中最大的一個球的體積是另兩個球的體積之和的()倍.A.95 B.2 C.523.設向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件4.無窮數(shù)列1,3,6,10,…的通項公式為()A. B.C. D.5.若程序框圖如圖所示,則該程序運行后輸出k的值是()A.5 B.6 C.7 D.86.sin300°的值為A. B. C. D.7.《九章算術》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為弧田面積,弧田(如圖所示)由圓弧和其所對的弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑為6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積大約是()()A.16平方米 B.18平方米C.20平方米 D.24平方米8.已知函數(shù)f(x)=2x+log2x,且實數(shù)a>b>c>0,滿足A.x0<a B.x0>a9.已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為()A.①② B.①②④ C.③④ D.①②③④10.數(shù)列的一個通項公式為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域為__________.12.已知,則的最小值為__________.13.已知函數(shù)fx=Asin14.已知向量,且,則的值為______15.已知點和在直線的兩側,則a的取值范圍是__________.16.下列命題中:①若,則的最大值為;②當時,;③的最小值為;④當且僅當均為正數(shù)時,恒成立.其中是真命題的是__________.(填上所有真命題的序號)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.數(shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.18.已知向量,.求:(1);(2)與的夾角的余弦值;(3)求的值使與為平行向量.19.在直角中,,延長至點D,使得,連接.(1)若,求的值;(2)求角D的最大值.20.如圖,漁船甲位于島嶼的南偏西方向的處,且與島嶼相距12海里,漁船乙以10海里/小時的速度從島嶼出發(fā)沿正北方向航行,若漁船甲同時從處出發(fā)沿北偏東的方向追趕漁船乙,剛好用2小時追上.(1)求漁船甲的速度;(2)求的值.21.已知等比數(shù)列的公比為,是的前項和;(1)若,,求的值;(2)若,,有無最值?說明理由;(3)設,若首項和都是正整數(shù),滿足不等式,且對于任意正整數(shù)有成立,問:這樣的數(shù)列有幾個?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應用和正弦定理,考查了轉化思想,屬中檔題.2、D【解析】
設最小球的半徑為R,根據(jù)比例關系即可得到另外兩個球的半徑,再利用球的體積公式表示出三個球的體積,即可得到結論?!驹斀狻吭O最小球的半徑為R,由三個球的半徑的比是1:2:3,可得另外兩個球的半徑分別為2R,3R;∴最小球的體積V1=43π∴V故答案選D【點睛】本題主要考查球體積的計算公式,屬于基礎題。3、C【解析】
利用向量共線的性質求得,由充分條件與必要條件的定義可得結論.【詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點睛】本題主要考查向量共線的性質、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.4、C【解析】試題分析:由累加法得:,分別相加得,,故選C.考點:數(shù)列的通項公式.5、A【解析】試題分析:第一次循環(huán)運算:;第二次:;第三次:;第四次:;第五次:,這時符合條件輸出,故選A.考點:算法初步.6、B【解析】
利用誘導公式化簡,再求出值為.【詳解】因為,故選B.【點睛】本題考查誘導公式的應用,即終邊相同角的三角函數(shù)值相等及.7、C【解析】分析:根據(jù)已知數(shù)據(jù)分別計算弦和矢的長度,再按照弧田面積經(jīng)驗公式計算,即可得到答案.詳解:由題可知,半徑,圓心角,弦長:,弦心距:,所以矢長為.按照弧田面積經(jīng)驗公式得,面積故選C.點睛:本題考查弓形面積以及古典數(shù)學的應用問題,考查學生對題意的理解和計算能力.8、D【解析】
由函數(shù)的單調性可得:當x0<c時,函數(shù)的單調性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【詳解】因為函數(shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負數(shù)的個數(shù)為奇數(shù),對于選項A,B,C選項可能成立,對于選項D,當x0函數(shù)的單調性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項D不可能成立,故選:D.【點睛】本題考查了函數(shù)的單調性,屬于中檔題.9、B【解析】
設數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,逐項驗證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結論.【詳解】設數(shù)列{an}的公比為q(q≠1)①由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;②由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;③由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;④由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;綜上,為“保比差數(shù)列函數(shù)”的所有序號為①②④故選:B.【點睛】本題考查新定義,考查對數(shù)的運算性質,考查等差數(shù)列的判定,考查學生分析解決問題的能力,屬于中檔題.10、C【解析】
利用特殊值,將代入四個選項即可排除錯誤選項.【詳解】將代入四個選項,可得A中B中D中只有C中所以排除ABD選項故選:C【點睛】本題考查了根據(jù)幾個項選擇數(shù)列的通項公式,特殊值法是解決此類問題的簡單方法,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
本題首先可通過三角恒等變換將函數(shù)化簡為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因為,所以.【點睛】本題考查通過三角恒等變換以及三角函數(shù)性質求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉化思想,是中檔題.12、【解析】
根據(jù)均值不等式即可求出的最小值.【詳解】因為所以,根據(jù)均值不等式可得:當且僅當,即時等號成立.【點睛】本題主要考查了均值不等式,屬于中檔題.13、f【解析】分析:首先根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得到A=2,然后算出函數(shù)的周期T=π,利用周期的公式,得到ω=2,最后將點(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f詳解:根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得A=2,又∵函數(shù)的周期34T=5π將點(5π12,2)代入,得:2=2sin所以fx的解析式是f點睛:本題給出了函數(shù)y=Asin(ωx+φ)的部分圖象,要確定其解析式,著重考查了三角函數(shù)基本概念和函數(shù)y=Asin(ωx+φ)的圖象與性質的知識點,屬于中檔題.14、-7【解析】
,利用列方程求解即可.【詳解】,且,,解得:.【點睛】考查向量加法、數(shù)量積的坐標運算.15、【解析】試題分析:若點A(3,1)和點B(4,6)分別在直線3x-2y+a=0兩側,則將點代入直線中是異號,則[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填寫-7<a<0考點:本試題主要考查了二元一次不等式與平面區(qū)域的運用.點評:解決該試題的關鍵是根據(jù)A、B在直線兩側,則A、B坐標代入直線方程所得符號相反構造不等式.16、①②【解析】
根據(jù)均值不等式依次判斷每個選項的正誤,得到答案.【詳解】①若,則的最大值為,正確②當時,,時等號成立,正確③的最小值為,取錯誤④當且僅當均為正數(shù)時,恒成立均為負數(shù)時也成立.故答案為①②【點睛】本題考查了均值不等式,掌握一正二定三相等的具體含義是解題的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)①見證明;②見證明;(3)++…+,證明見解析【解析】
(1)將代入,結合可求出的值;(2)可知,,即可證明結論;(3)由題意可得,從而可得到,求和可得,然后作差,通過討論可比較二者大小.【詳解】(1)由題意:,.而,得,即,解得或,因為,所以滿足題意.(2)因為,所以.則.,因為,,所以,所以.(3)由,可得,從而,所以.因為,所以,所以.,,,,當n=1時,,故;當n=2時,,;當n≥3時,,則,.【點睛】本題主要考查了數(shù)列的遞推關系式和數(shù)列的求和,考查了不等式的證明,考查了學生的邏輯推理能力與計算能力,屬于難題.18、(1)5(2)(3)【解析】
(1)利用向量坐標運算法則,先求出向量的坐標,再求模;(2)利用兩個向量的數(shù)量積的定義和公式,則可求出與的夾角的余弦值;(3)利用兩個向量共線的性質,求出的值.【詳解】(1)向量,,,;(2)設與的夾角為,∵,,,所以,即與的夾角的余弦值為;(3)由題可得:,∵與為平行向量,∴,解得,即滿足使與為平行向量.【點睛】本題主要考查向量的坐標運算,涉及向量的模,數(shù)量積,共線等相關知識,屬于基礎題.19、(1);(2).【解析】
(1)在中,由正弦定理得,,再結合在直角中,,然后求解即可;(2)由正弦定理及兩角和的余弦可得,然后結合三角函數(shù)的有界性求解即可.【詳解】解:(1)設,在中,由正弦定理得,,而在直角中,,所以,因為,所以,又因為,所以,所以,所以;(2)設,在中,由正弦定理得,,而在直角中,,所以,因為,所以,即,即,根據(jù)三角函數(shù)有界性得,及,解得,所以角D的最大值為.【點睛】本題考查了正弦定理,重點考查了三角函數(shù)的有界性,屬中檔題.20、(1)14海里/小時;(2).【解析】
(1),∴∴,∴V甲海里/小時;(2)在中,由正弦定理得∴∴.點評:主要是考查了正弦定理和余弦定理的運用,屬于基礎題.21、(1);(2),最小值,最大值;,最小值,無最大值;(3)個【解析】
(1)由,分類討論,分別求得,結合極限的運算,即可求解;(2)由等比數(shù)列的前項和公式,求得,再分和兩種情況討論,即可求解,得到結論;(3)由不等式,求得,在由等比數(shù)列的前項和公式,得到,根據(jù)不等式成立,可得,結合數(shù)列的單調性,即可求解.【詳解】(1)由題意,等比數(shù)列,且,①當時,可得,,所以,②當時,可得,所以,綜上所述,當,時,.(2)由等比數(shù)列的前項和公式,可得,因為且,所以,①當時,單調遞增,此時有最小值,無最大值;②當時,中,當為偶數(shù)時,單調遞增,且;當為奇數(shù)時,單調遞減,且;分析可得:有最大值,最小值為;綜上述,①當時,的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版安全生產(chǎn)事故調查處理合同范本3篇
- 2025版綠色節(jié)能舊房改造服務合同
- 2024年股權投資代持協(xié)議書
- 2025年度淀粉類產(chǎn)品研發(fā)生產(chǎn)與技術轉移合同2篇
- 2024水電站水電租賃服務合同與水電發(fā)電量銷售協(xié)議3篇
- 商是兩位數(shù)的筆算除法(說課稿)-2024-2025學年四年級上冊數(shù)學人教版
- 2025年小學語文四年級下冊名師教案習作:我的動物朋友
- 2024版小學教育設備采購與維護合同
- 山里放松心情的句子
- 2024年金融數(shù)據(jù)保密與反洗錢合規(guī)協(xié)議3篇
- 專項債券培訓課件
- 中央企業(yè)人工智能應用場景案例白皮書(2024年版)-中央企業(yè)人工智能協(xié)同創(chuàng)新平臺
- 江蘇省蘇州市2024-2025學年第一學期八年級歷史期末模擬卷(二)(含答案)
- 杜瓦瓶充裝操作規(guī)程(3篇)
- 安全管理體系與措施
- 校園重點防火部位消防安全管理規(guī)定(3篇)
- 甘肅蘭州生物制品研究所筆試題庫
- 醫(yī)院改擴建工程可行性研究報告(論證后)
- 雙方共同招工協(xié)議書(2篇)
- 2021-2022學年第二學期《大學生職業(yè)發(fā)展與就業(yè)指導2》學習通超星期末考試答案章節(jié)答案2024年
- 期末檢測試卷(試題)-2024-2025學年四年級上冊數(shù)學青島版
評論
0/150
提交評論