版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省普寧二中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知則的最小值是()A. B.4 C. D.52.已知點,點是圓上任意一點,則面積的最大值是()A. B. C. D.3.()A. B. C. D.4.若一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為,則目標受損但未被擊毀的概率為()A. B. C. D.5.若函數(shù)在處取最小值,則等于()A.3 B. C. D.46.函數(shù)的最小正周期為,則的圖象的一條對稱軸方程是()A. B. C. D.7.已知,那么()A. B. C. D.8.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.9.甲、乙、丙、丁4名田徑選手參加集訓(xùn),將挑選一人參加400米比賽,他們最近10次測試成績的平均數(shù)和方差如下表;根據(jù)表中數(shù)據(jù),應(yīng)選哪位選手參加比賽更有機會取得好成績?()甲乙丙丁平均數(shù)59575957方差12121010A.甲 B.乙 C.丙 D.丁10.中,,則()A.5 B.6 C. D.8二、填空題:本大題共6小題,每小題5分,共30分。11.已知關(guān)于實數(shù)x,y的不等式組構(gòu)成的平面區(qū)域為,若,使得恒成立,則實數(shù)m的最小值是______.12.已知函數(shù),的最小正周期是___________.13.已知,那么__________.14.的內(nèi)角的對邊分別為,,,若的面積為,則角_______.15.無窮等比數(shù)列的首項是某個正整數(shù),公比為單位分數(shù)(即形如:的分數(shù),為正整數(shù)),若該數(shù)列的各項和為3,則________.16.已知函數(shù),為的反函數(shù),則_______(用反三角形式表示).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖是函數(shù)的部分圖像,是它與軸的兩個不同交點,是之間的最高點且橫坐標為,點是線段的中點.(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;(2)若時,函數(shù)的最小值為,求實數(shù)的值.18.在△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2(Ⅰ)求A的大??;(Ⅱ)如果cosB=6319.若,解關(guān)于的不等式.20.某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.(1)求圖中x的值;(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.21.在平面直角坐標系中,的頂點、,邊上的高線所在的直線方程為,邊上的中線所在的直線方程為.(1)求點B到直線的距離;(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意結(jié)合均值不等式的結(jié)論即可求得的最小值,注意等號成立的條件.【詳解】由題意可得:,當且僅當時等號成立.即的最小值是.故選:C.【點睛】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.2、B【解析】
求出直線的方程,計算出圓心到直線的距離,可知的最大高度為,并計算出,最后利用三角形的面積公式可得出結(jié)果.【詳解】直線的方程,且,圓的圓心坐標為,半徑長為,圓心到直線的距離為,所以,點到直線的距離的最大值為,因此,面積的最大值為,故選B.【點睛】本題考查三角形面積的最值問題,考查圓的幾何性質(zhì),當直線與圓相離時,若圓的半徑為,圓心到直線的距離為,則圓上一點到直線距離的最大值為,距離的最小值為,要熟悉相關(guān)結(jié)論的應(yīng)用.3、B【解析】
根據(jù)誘導(dǎo)公式和兩角和的余弦公式的逆用變形即可得解.【詳解】由題:故選:B【點睛】此題考查兩角和的余弦公式的逆用,關(guān)鍵在于熟記相關(guān)公式,準確化簡求值.4、D【解析】
由已知條件利用對立事件概率計算公式直接求解.【詳解】由于一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為;所以目標受損的概率為:;目標受損分為擊毀和未被擊毀,它們是對立事件;所以目標受損的概率目標受損被擊毀的概率目標受損未被擊毀的概率;故目標受損但未被擊毀的概率目標受損的概率目標受損被擊毀的概率,即目標受損但未被擊毀的概率;故答案選D【點睛】本題考查概率的求法,注意對立事件概率計算公式的合理運用,屬于基礎(chǔ)題.5、A【解析】
將函數(shù)的解析式配湊為,再利用基本不等式求出該函數(shù)的最小值,利用等號成立得出相應(yīng)的值,可得出的值.【詳解】當時,,則,當且僅當時,即當時,等號成立,因此,,故選A.【點睛】本題考查基本不等式等號成立的條件,利用基本不等式要對代數(shù)式進行配湊,注意“一正、二定、三相等”這三個條件的應(yīng)用,考查計算能力,屬于中等題.6、B【解析】
根據(jù)最小正周期為求解與解析式,再求解的對稱軸判斷即可.【詳解】因為最小正周期為,故.故,對稱軸方程為,解得.當時,.故選:B【點睛】本題主要考查了三角函數(shù)最小正周期的應(yīng)用以及對稱軸的計算.屬于基礎(chǔ)題.7、C【解析】試題分析:由,得.故選B.考點:誘導(dǎo)公式.8、A【解析】
利用正弦定理把題設(shè)等式中的邊換成角的正弦,進而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。9、D【解析】
由平均數(shù)及方差綜合考慮得結(jié)論.【詳解】解:由四位選手的平均數(shù)可知,乙與丁的平均速度快;再由方差越小發(fā)揮水平越穩(wěn)定,可知丙與丁穩(wěn)定,故應(yīng)選丁選手參加比賽更有機會取得好成績.故選:.【點睛】本題考查平均數(shù)與方差,熟記結(jié)論是關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】
根據(jù)余弦定理,可求邊長.【詳解】,代入數(shù)據(jù),化解為解得或(舍)故選D.【點睛】本題考查了已知兩邊及其一邊所對角,求另一邊,這種題型用余弦定理,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點與定點距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標函數(shù),則目標函數(shù)表示平面區(qū)域內(nèi)的點與定點距離的平方,由圖像易知,點到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點睛】本題主要考查簡單的線性規(guī)劃問題,只需分析清楚目標函數(shù)的幾何意義,即可結(jié)合可行域來求解,屬于??碱}型.12、【解析】
先化簡函數(shù)f(x),再利用三角函數(shù)的周期公式求解.【詳解】由題得,所以函數(shù)的最小正周期為.故答案為【點睛】本題主要考查和角的正切和正切函數(shù)的周期的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.13、2017【解析】,故,由此得.【點睛】本題主要考查函數(shù)解析式的求解方法,考查等比數(shù)列前項和的計算公式.對于函數(shù)解析式的求法,有兩種,一種是換元法,另一種的變換法.解析中運用的方法就是變換法,即將變換為含有的式子.也可以令.等比數(shù)列求和公式為.14、【解析】
根據(jù)三角形面積公式和余弦定理可得,從而求得;由角的范圍可確定角的取值.【詳解】故答案為:【點睛】本題考查余弦定理和三角形面積公式的應(yīng)用問題,關(guān)鍵是能夠配湊出符合余弦定理的形式,進而得到所求角的三角函數(shù)值.15、【解析】
利用無窮等比數(shù)列的各項和,可求得,從而,利用首項是某個自然數(shù),可求,進而可求出.【詳解】無窮等比數(shù)列各項和為3,,是個自然數(shù),則,.故答案為:【點睛】本題主要考查了等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.16、【解析】
先將轉(zhuǎn)化為,,然后求出即可【詳解】因為所以所以所以所以把與互換可得即所以故答案為:【點睛】本題考查的是反函數(shù)的求法,較簡單三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由點是線段的中點,可得和的坐標,從而得最值和周期,可得和,再代入頂點坐標可得,再利用整體換元可求單調(diào)區(qū)間;(2)令得到,討論二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系求最值即可.【詳解】(1)因為為中點,,所以,,則,,又因為,則所以,由又因為,則所以令又因為則單調(diào)遞增區(qū)間為.(2)因為所以令,則對稱軸為①當時,即時,;②當時,即時,(舍)③當時,即時,(舍)綜上可得:.【點睛】本題主要考查了利用三角函數(shù)的圖象求解三角函數(shù)的解析式及二次函數(shù)軸動區(qū)間定的最值問題,考查了學(xué)生的分類討論思想及計算能力,屬于中檔題.18、(1)π3;(2)3【解析】試題分析:(1)先根據(jù)條件b2+c2=a2+bc結(jié)合余弦定理求出cosA試題解析:(1)因為b2所以cosA=又因為A∈(0,π),所以A=π(2)解:因為cosB=63所以sinB=由正弦定理asin得.考點:1.正弦定理與余弦定理;2.同角三角函數(shù)的基本關(guān)系19、當0<a<1時,原不等式的解集為,當a<0時,原不等式的解集為;當a=0時,原不等式的解集為?.【解析】
試題分析:(1),利用,可得,分三種情況對討論的范圍:0<a<1,a<0,a=0,分別求得相應(yīng)情況下的解集即可.試題解析:不等式>1可化為>0.因為a<1,所以a-1<0,故原不等式可化為<0.故當0<a<1時,原不等式的解集為,當a<0時,原不等式的解集為,當a=0時,原不等式的解集為?.20、(1)0.02(2)平均數(shù)77,中位數(shù)(3).【解析】
(1)由頻率分布直方圖的性質(zhì)列方程能求出x.(2)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù)和中位數(shù).(3)滿意度評分值在[50,60)內(nèi)有5人,其中男生3人,女生2人,記“滿意度評分值為[50,60)的人中隨機抽取2人進行座談,2人均為男生”為事件A,利用古典概型能求出2人均為男生的概率.【詳解】(1)由,解得.(2)這組數(shù)據(jù)的平均數(shù)為.中位數(shù)設(shè)為m,則,解得.(3)滿意度評分值在內(nèi)有人,其中男生3人,女生2人.記為記“滿意度評分值為的人中隨機抽取2人進行座談,2人均為男生”為事件A則總基本事件個數(shù)為10個,A包含的基本事件個數(shù)為3個,利用古典概型概率公式可知.【點睛】本題考查頻率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購合同范本實務(wù)操作手冊3篇
- 采購合同制定合作雙方權(quán)益的保障3篇
- 采購合同評審表問答3篇
- 采購合同的市場趨勢預(yù)測3篇
- 采購合同中英文版填寫范本3篇
- 采購合同框架協(xié)議的簽訂發(fā)展趨勢3篇
- 采購合同提升企業(yè)合同簽訂效率3篇
- 采購戰(zhàn)略合同的綠色發(fā)展戰(zhàn)略優(yōu)化3篇
- 2024年度養(yǎng)老機構(gòu)與志愿者組織合作協(xié)議范本3篇
- 2024年汽車行業(yè)人才招聘與培訓(xùn)合同集錦3篇
- 暗黑破壞神裝備大全
- 幼兒園游戲設(shè)計與實施研究
- 自然資源學(xué)原理(緒論)蔡運龍
- 大學(xué)英語(一)智慧樹知到期末考試答案2024年
- 高空作業(yè)安全免責(zé)聲明
- 工程制圖知識要點
- 2024山東能源集團中級人才庫選拔高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 2021年安徽省公務(wù)員錄用考試《行測》真題及答案
- 個人就業(yè)能力展示
- 冰箱側(cè)板制造工藝
- 四川省涼山州西昌市2023-2024學(xué)年高一上學(xué)期期末考試物理試題【含答案解析】
評論
0/150
提交評論