![2025屆廣東省深圳市平湖中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第1頁](http://file4.renrendoc.com/view3/M03/2B/2A/wKhkFmZ0hjOAcbRJAAIkK-UT3mw813.jpg)
![2025屆廣東省深圳市平湖中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第2頁](http://file4.renrendoc.com/view3/M03/2B/2A/wKhkFmZ0hjOAcbRJAAIkK-UT3mw8132.jpg)
![2025屆廣東省深圳市平湖中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第3頁](http://file4.renrendoc.com/view3/M03/2B/2A/wKhkFmZ0hjOAcbRJAAIkK-UT3mw8133.jpg)
![2025屆廣東省深圳市平湖中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第4頁](http://file4.renrendoc.com/view3/M03/2B/2A/wKhkFmZ0hjOAcbRJAAIkK-UT3mw8134.jpg)
![2025屆廣東省深圳市平湖中學高一數(shù)學第二學期期末經(jīng)典模擬試題含解析_第5頁](http://file4.renrendoc.com/view3/M03/2B/2A/wKhkFmZ0hjOAcbRJAAIkK-UT3mw8135.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省深圳市平湖中學高一數(shù)學第二學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了得到函數(shù)的圖像,只需把函數(shù)的圖像A.向左平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向右平移個長度單位2.在ΔABC中,內角A,B,C所對的邊分別為a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π3.若對任意,不等式恒成立,則a的取值范圍為()A. B. C. D.4.已知數(shù)列滿足,,則的值為()A. B. C. D.5.某林場有樹苗30000棵,其中松樹苗4000棵.為調查樹苗的生長情況,采用分層抽樣的方法抽取一個容量為150的樣本,則樣本中松樹苗的數(shù)量為()A.30 B.25 C.20 D.156.函數(shù)的最小正周期為()A. B. C. D.7.直線與直線的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在ΔABC中,角A,B,C所對的邊分別為a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.9.設,則使函數(shù)的定義域是,且為偶函數(shù)的所有的值是()A.0,2 B.0,-2 C. D.210.中,,則是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.若直線平分圓,則的值為________.12.已知正數(shù)、滿足,則的最小值是________.13.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現(xiàn)按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.14.設向量,若,,則.15.已知在中,角的大小依次成等差數(shù)列,最大邊和最小邊的長是方程的兩實根,則__________.16.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②先將函數(shù)的圖象上各點縱坐標不變,橫坐標縮小為原來的后,再將所得函數(shù)圖象整體向左平移個單位,可得函數(shù)的圖象;③函數(shù)有三個零點;④函數(shù)在上單調遞減,在上單調遞增.其中正確的是__________.(填上所有正確說法的序號)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,在直角坐標系中,點,,點P,Q在單位圓上,以x軸正半軸為始邊,以射線為終邊的角為,以射線為終邊的角為,滿足.(1)若,求(2)當點P在單位圓上運動時,求函數(shù)的解析式,并求的最大值.18.已知圓心在軸的正半軸上,且半徑為2的圓被直線截得的弦長為.(1)求圓的方程;(2)設動直線與圓交于兩點,則在軸正半軸上是否存在定點,使得直線與直線關于軸對稱?若存在,請求出點的坐標;若不存在,請說明理由.19.已知數(shù)列是等差數(shù)列,,.(1)從第幾項開始;(2)求數(shù)列前n項和的最大值.20.設和是兩個等差數(shù)列,記(),其中表示,,這個數(shù)中最大的數(shù).已知為數(shù)列的前項和,,.(1)求數(shù)列的通項公式;(2)若,求,,的值,并求數(shù)列的通項公式;(3)求數(shù)列前項和.21.設的內角所對應的邊長分別是,且.(Ⅰ)當時,求的值;(Ⅱ)當?shù)拿娣e為時,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:記函數(shù),則函數(shù)∵函數(shù)f(x)圖象向右平移單位,可得函數(shù)的圖象∴把函數(shù)的圖象右平移單位,得到函數(shù)的圖象,故選B.考點:函數(shù)y=Asin(ωx+φ)的圖象變換.2、A【解析】
利用正弦定理可求得sinB=12【詳解】因為c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【點睛】本題主要考查正弦定理的運用,難度較小.3、D【解析】
對任意,不等式恒成立,即恒成立,代入計算得到答案.【詳解】對任意,不等式恒成立即恒成立故答案為D【點睛】本題考查了不等式恒成立問題,意在考查學生的計算能力和解決問題的能力.4、B【解析】
由,得,然后根據(jù)遞推公式逐項計算出、的值,即可得出的值.【詳解】,,則,,,因此,,故選B.【點睛】本題考查數(shù)列中相關項的計算,解題的關鍵就是遞推公式的應用,考查計算能力,屬于基礎題.5、C【解析】
抽取比例為,,抽取數(shù)量為20,故選C.6、D【解析】,函數(shù)的最小正周期為,選.【點睛】求三角函數(shù)的最小正周期,首先要利用三角公式進行恒等變形,化簡函數(shù)解析式,把函數(shù)解析式化為的形式,然后利用周期公式求出最小正周期,另外還要注意函數(shù)的定義域.7、B【解析】
聯(lián)立方程組,求得交點的坐標,即可得到答案.【詳解】由題意,聯(lián)立方程組:,解得,即兩直線的交點坐標為,在第二象限,選B.【點睛】本題主要考查了兩條直線的位置關系的應用,著重考查了運算與求解能力,屬于基礎題.8、A【解析】
利用正弦定理asinA=【詳解】在ΔABC中,由正弦定理得asinA=故選:A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎題。9、D【解析】
根據(jù)冪函數(shù)的性質,結合題中條件,即可得出結果.【詳解】若函數(shù)的定義域是,則;又函數(shù)為偶函數(shù),所以只能使偶數(shù);因為,所以能取的值為2.故選D【點睛】本題主要考查冪函數(shù)性質的應用,熟記冪函數(shù)的性質即可,屬于常考題型.10、C【解析】
由平面向量數(shù)量積運算可得,即,得解.【詳解】解:在中,,則,即,則為鈍角,所以為鈍角三角形,故選:C.【點睛】本題考查了平面向量數(shù)量積運算,重點考查了向量的夾角,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
把圓的一般式方程化為標準方程得到圓心,根據(jù)直線過圓心,把圓心的坐標代入到直線的方程,得到關于的方程,解方程即可【詳解】圓的標準方程為,則圓心為直線過圓心解得故答案為【點睛】本題考查的是直線與圓的位置關系,解題的關鍵是求出圓心的坐標,屬于基礎題12、.【解析】
利用等式得,將代數(shù)式與代數(shù)式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【詳解】,所以,由基本不等式可得,當且僅當時,等號成立,因此,的最小值是,故答案為:.【點睛】本題考查利用基本不等式求最值,解題時要對代數(shù)式進行合理配湊,考查分析問題和解決問題的能力,屬于中等題.13、1.【解析】
先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數(shù)為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.14、【解析】
利用向量垂直數(shù)量積為零列等式可得,從而可得結果.【詳解】因為,且,所以,可得,又因為,所以,故答案為.【點睛】利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.15、【解析】
本題首先可根據(jù)角的大小依次成等差數(shù)列計算出,然后根據(jù)最大邊和最小邊的長是方程的兩實根得到以及,最后根據(jù)余弦定理即可得出結果.【詳解】因為角成等差數(shù)列,所以,又因為,所以.設方程的兩根分別為、,則,由余弦定理可知:,所以.【點睛】本題考查根據(jù)余弦定理求三角形邊長,考查等差中項以及韋達定理的應用,余弦定理公式為,體現(xiàn)了綜合性,是中檔題.16、②③④【解析】
根據(jù)向量,函數(shù)零點,函數(shù)的導數(shù),以及三角函數(shù)有關知識,對各個命題逐個判斷即可.【詳解】對①,若與的夾角為鈍角,則且與不共線,即,解得且,所以①錯誤;對②,先將函數(shù)的圖象上各點縱坐標不變,橫坐標縮小為原來的后,得函數(shù)的圖象,再將圖象整體向左平移個單位,可得函數(shù)的圖象,②正確;對③,函數(shù)的零點個數(shù),即解的個數(shù),亦即函數(shù)與的圖象的交點個數(shù),作出兩函數(shù)的圖象,如圖所示:由圖可知,③正確;對④,,當時,,當時,,故函數(shù)在上單調遞減,在上單調遞增,④正確.故答案為:②③④.【點睛】本題主要考查命題的真假判斷,涉及向量數(shù)量積,三角函數(shù)圖像變換,函數(shù)零點個數(shù)的求法,以及函數(shù)單調性的判斷等知識的應用,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2),最大值.【解析】
(1)由角的定義求出,再由數(shù)量積定義計算;(2)由三角函數(shù)定義寫出坐標,求出的坐標,計算出,利用兩角和的正弦公式可化函數(shù)為一個三角函數(shù)形式,由正弦函數(shù)性質可求得最大值.【詳解】(1)由圖可知,,..(2)由題意可知,.因為,,所以.所以,.所以.當()時,取得最大值.【點睛】本題考查任意角的定義,平面向量的數(shù)量積的坐標運算,考查兩角和的正弦公式、誘導公式及正弦函數(shù)的性質.本題解題關鍵是掌握三角函數(shù)的定義,表示出坐標.18、(1)(2)當點為時,直線與直線關于軸對稱,詳見解析【解析】
(1)設圓的方程為,由垂徑定理求得弦長,再由弦長為可求得,從而得圓的方程;(2)假設存在定點,使得直線與直線關于軸對稱,則,同時設,直線方程代入圓方程后用韋達定理得,即為,代入可求得,說明存在.【詳解】(1)設圓的方程為:圓心到直線的距離根據(jù)垂徑定理得,,解得,,故圓的方程為(2)假設存在定點,使得直線與直線關于軸對稱,那么,設聯(lián)立得:由.故存在,當點為時,直線與直線關于軸對稱.【點睛】本題考查圓的標準方程,考查直線與圓的位置關系.在解決存在性命題時,一般都是假設存在,然后根據(jù)已知去推理求解.象本題定點問題,就是假設存在定點,用設而不求法推理求解,解出值,如不能解出值,說明不存在.19、(1)從第27項開始(2)【解析】
(1)寫出通項公式解不等式即可;(2)由(1)得數(shù)列最后一個負項為取得最大值處即可求解【詳解】(1).解得.所以從第27項開始.(2)由上可知當時,最大,最大為.【點睛】本題考查等差數(shù)列的通項公式及前n項和的最值,考查推理能力,是基礎題20、(1);(2),,,;(3)【解析】
(1)根據(jù)題意,化簡得,運用已知求公式,即可求解通項公式;(2)根據(jù)題意,寫出通項,根據(jù)定義,令,可求解,,的值,再判斷單調遞減,可求數(shù)列的通項公式;(3)由(1)(2)的數(shù)列、的通項公式,代入數(shù)列中,運用錯位相減法求和.【詳解】(1)∵,∴,當時,,化簡得,∴,當時,,,∵,∴,∴是首項為1,公差為2的等差數(shù)列,∴.(2),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)鵝回收合同范本
- sushe裝修合同范例
- 代開勞務合同范本
- 高校音樂廳的運營管理探究
- ktv公主合同范本
- 包棚銷售合同范本
- 產(chǎn)品交易居間合同范例
- 住宅賣房合同范本
- 對乙方有利租房合同范本
- 個體施工合同范本
- 01-衛(wèi)生法學與衛(wèi)生法概述課件
- 汽車智能制造技術課件
- 中醫(yī)外治法課件
- 2025屆山東省濱州市三校聯(lián)考語文高三第一學期期末質量跟蹤監(jiān)視試題含解析
- 道路運輸企業(yè)主要負責人和安全生產(chǎn)管理人員安全考核題(公共部分題+專業(yè)部分題)及答案
- 4.2 歌曲《牧羊女》課件(14張)
- 2023電化學儲能電站消防安全標準鉛炭電池(鉛酸電池)
- 2024都市人群科學護肝白皮書-byhealthx庶正康訊x天貓-202409
- 2024至2030年中國天津市酒店行業(yè)市場發(fā)展現(xiàn)狀及投資方向研究報告
- 新教材-外研版高中英語選擇性必修第二冊全冊教學課件(按單元排序-)
- 甘肅省臨夏州2023-2024學年高二下學期期末質量檢測語文試卷(無答案)
評論
0/150
提交評論