




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省衢州市五校聯(lián)盟2025屆高一下數(shù)學期末達標檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓與圓的位置關(guān)系為()A.相交 B.相離 C.相切 D.內(nèi)含2.某正弦型函數(shù)的圖像如圖,則該函數(shù)的解析式可以為().A. B.C. D.3.點直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或4.在四邊形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共線,則四邊形ABCD為()A.平行四邊形 B.矩形 C.梯形 D.菱形5.已知直線,平面,給出下列命題:①若,且,則②若,且,則③若,且,則④若,且,則其中正確的命題是()A.①③ B.②④ C.③④ D.①②6.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.807.將邊長為2的正方形沿對角線折起,則三棱錐的外接球表面積為()A. B. C. D.8.在△中,點是上一點,且,是中點,與交點為,又,則的值為()A. B. C. D.9.為了了解我校今年準備報考飛行員的學生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為,第2小組的頻數(shù)為12,則抽取的學生總?cè)藬?shù)是()A.24 B.48 C.56 D.6410.的內(nèi)角的對邊分別為成等比數(shù)列,且,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式為,若數(shù)列為單調(diào)遞增數(shù)列,則實數(shù)的取值范圍是______.12.已知數(shù)列滿足,則__________.13.已知向量,,若,則實數(shù)___________.14.等差數(shù)列滿足,則其公差為__________.15.函數(shù)的反函數(shù)為____________.16.若,則=_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.18.某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).(1)求樓房每平方米的平均綜合費用f(x)的解析式.(2)為了使樓房每平方米的平均綜合費用最少,該樓房應建為多少層?每平方米的平均綜合費用最小值是多少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)19.已知圓過兩點,,且圓心在直線上.(1)求圓的標準方程;(2)求過點且與圓相切的直線方程.20.已知:,,,,求的值.21.已知數(shù)列滿足:,,.(1)求、、;(2)求證:數(shù)列為等比數(shù)列,并求其通項公式;(3)求和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先把兩個圓的一般方程轉(zhuǎn)化為標準方程,求出其圓心坐標和半徑,再比較圓心距與半徑的關(guān)系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關(guān)系是相離.故選:B【點睛】本題主要考查圓與圓的位置關(guān)系,比較圓心距和半徑的關(guān)系是解決本題的關(guān)鍵,屬于簡單題.2、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點法中的第一個點,∴,∴把A,B排除,對于C:,故選C考點:本題考查函數(shù)的圖象和性質(zhì)點評:解決本題的關(guān)鍵是確定的值3、C【解析】
直線經(jīng)過定點,斜率為,數(shù)形結(jié)合利用直線的斜率公式,求得實數(shù)的取值范圍,得到答案.【詳解】如圖所示,直線經(jīng)過定點,斜率為,當直線經(jīng)過點時,則,當直線經(jīng)過點時,則,所以實數(shù)的取值范圍,故選C.【點睛】本題主要考查了直線過定點問題,以及直線的斜率公式的應用,著重考查了數(shù)形結(jié)合法,以及推理與運算能力,屬于基礎題.4、C【解析】∵=++=-8a-2b=2,與不平行,∴四邊形ABCD為梯形.5、A【解析】
根據(jù)面面垂直,面面平行的判定定理判斷即可得出答案?!驹斀狻竣偃?,則在平面內(nèi)必有一條直線使,又即,則,故正確。②若,且,與可平行可相交,故錯誤③若,即又,則,故正確④若,且,與可平行可相交,故錯誤所以①③正確,②④錯誤故選A【點睛】本題考查面面垂直,面面平行的判定,屬于基礎題。6、D【解析】
,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.7、C【解析】
根據(jù)題意,畫出圖形,結(jié)合圖形得出三棱錐的外接球直徑,從而求出外接球的表面積,得到答案.【詳解】由題意,將邊長為2的正方形沿對角線折起,得到三棱錐,如圖所示,則,三棱錐的外接球直徑為,即半徑為,外接球的表面積為,故選C.【點睛】本題主要考查了平面圖形的折疊問題,以及外接球的表面積的計算,著重考查了空間想象能力,以及推理與計算能力,屬于基礎題.8、D【解析】試題分析:因為三點共線,所以可設,又,所以,,將它們代入,即有,由于不共線,從而有,解得,故選擇D.考點:向量的基本運算及向量共線基本定理.9、B【解析】
根據(jù)頻率分布直方圖可知從左到右的前3個小組的頻率之和,再根據(jù)頻率之比可求出第二組頻率,結(jié)合頻數(shù)即可求解.【詳解】由直方圖可知,從左到右的前3個小組的頻率之和為,又前3個小組的頻率之比為,所以第二組的頻率為,所以學生總數(shù),故選B.【點睛】本題主要考查了頻率分布直方圖,頻率,頻數(shù),總體,屬于中檔題.10、B【解析】
成等比數(shù)列,可得,又,可得,利用余弦定理即可得出.【詳解】解:成等比數(shù)列,,又,,則故選B.【點睛】本題考查了等比數(shù)列的性質(zhì)、余弦定理,考查了推理能力與計算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意得到,推出,恒成立,求出的最大值,即可得出結(jié)果.【詳解】因為數(shù)列的通項公式為,且數(shù)列為單調(diào)遞增數(shù)列,所以,即,所以,恒成立,因此即可,又隨的增大而減小,所以,因此實數(shù)的取值范圍是.故答案為:【點睛】本題主要考查由數(shù)列的單調(diào)性求參數(shù),熟記遞增數(shù)列的特點即可,屬于??碱}型.12、【解析】
數(shù)列為以為首項,1為公差的等差數(shù)列?!驹斀狻恳驗樗杂炙詳?shù)列為以為首項,1為公差的等差數(shù)列。所以所以故填【點睛】本題考查等差數(shù)列,屬于基礎題。13、【解析】
由垂直關(guān)系可得數(shù)量積等于零,根據(jù)數(shù)量積坐標運算構(gòu)造方程求得結(jié)果.【詳解】,解得:故答案為:【點睛】本題考查根據(jù)向量垂直關(guān)系求解參數(shù)值的問題,關(guān)鍵是明確兩向量垂直,則向量數(shù)量積為零.14、【解析】
首先根據(jù)等差數(shù)列的性質(zhì)得到,再根據(jù)即可得到公差的值.【詳解】,解得.,所以.故答案為:【點睛】本題主要考查等差數(shù)列的性質(zhì),熟記公式為解題的關(guān)鍵,屬于簡單題.15、【解析】
首先求出在區(qū)間的值域,再由表示的含義,得到所求函數(shù)的反函數(shù).【詳解】因為,所以,.所以的反函數(shù)是.故答案為:【點睛】本題主要考查反函數(shù)定義,同時考查了三角函數(shù)的值域問題,屬于簡單題.16、【解析】
∵,∴∴=1×[+]=1.故答案為:1.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由知:,利用等比數(shù)列的通項公式即可得出;(2)bn=|11﹣2n|,設數(shù)列{11﹣2n}的前n項和為Tn,則.當n≤5時,Sn=Tn;當n≥6時,Sn=2S5﹣Tn.【詳解】(1)證明:由知,所以數(shù)列是以為首項,為公比的等比數(shù)列.則,.(2),設數(shù)列前項和為,則,當時,;當時,;所以.【點睛】本題考查了等比數(shù)列與等差數(shù)列的通項公式及其前n項和公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.18、(1);(2)該樓房應建為20層,每平方米的平均綜合費用最小值為5000元.【解析】【試題分析】先建立樓房每平方米的平均綜合費用函數(shù),再應基本不等式求其最小值及取得極小值時:解:設樓房每平方米的平均綜合費用,,當且僅當時,等號取到.所以,當時,最小值為5000元.19、(1)(2)【解析】
(1)設圓心坐標為,根據(jù),求得,進而得到圓的方程;(2)由在圓上,則,得到,求得,進而求得圓的切線方程.【詳解】(1)由題意,圓心在直線上,設圓心坐標為,由,即,所以,圓心,半徑,圓的標準方程為.(2)設切線方程為,因為在圓上,所以,所以,又,所以,所以切線方程為,即,所以過的切線方程.【點睛】本題主要考查了圓的方程的求解,以及直線與圓的位置關(guān)系的應用,其中解答中熟記圓的方程的形式,以及圓的切線的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.20、【解析】
先由同角三角函數(shù)的平方關(guān)系求出,,然后結(jié)合兩角和的余弦公式求解即可.【詳解】解:由,,,,所以,,則.【點睛】本題考查了同角三角函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電競戰(zhàn)隊選手轉(zhuǎn)會及商業(yè)代言合作協(xié)議
- 線性代數(shù)中的向量運算:基于坐標描述的課件
- 《口腔間隙感染》課件
- 建筑項目部人力資源戰(zhàn)略規(guī)劃培訓課件
- 初中物理教案力的作用效果課件
- 《軟件工程概念》課件 - 深入解析軟件開發(fā)與維護
- 《納米級探針技術(shù)-課件顯微鏡T》課件
- 《中文基礎寫作》課件
- 外貿(mào)商函專用課件
- 基礎化學物質(zhì)的鑒別與檢驗 - 課件
- 教師形體與禮儀知到智慧樹章節(jié)測試課后答案2024年秋成都師范學院
- 安全玻璃采光頂施工方案
- 上海市農(nóng)村房地一體宅基地確權(quán)登記工作實施方案
- 《有效處理客戶投訴的策略與技巧:課件》
- 供應鏈管理流程圖及說明課件
- 11 浪花 說課稿-2024-2025學年統(tǒng)編版(2024)語文一年級下冊
- 全民健康信息綜合管理平臺建設方案
- 新蘇教版一年級數(shù)學下冊第一單元第1課時《9加幾》教案
- 河道疏浚及堤防工程施工重難點及相關(guān)技術(shù)保證措施
- 2025年中石化招聘筆試參考題庫含答案解析
- 湖南省邵陽市2024年中考物理試卷(解析版)
評論
0/150
提交評論