![江蘇省常州市高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M00/07/0A/wKhkGWZ0h4mAQQrhAAJdNWtFxMc161.jpg)
![江蘇省常州市高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M00/07/0A/wKhkGWZ0h4mAQQrhAAJdNWtFxMc1612.jpg)
![江蘇省常州市高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M00/07/0A/wKhkGWZ0h4mAQQrhAAJdNWtFxMc1613.jpg)
![江蘇省常州市高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M00/07/0A/wKhkGWZ0h4mAQQrhAAJdNWtFxMc1614.jpg)
![江蘇省常州市高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M00/07/0A/wKhkGWZ0h4mAQQrhAAJdNWtFxMc1615.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省常州市高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則的最小值為()A.8 B.12 C.16 D.202.在中,所對的邊分別為,若,,,則()A. B. C.1 D.33.已知函數(shù),若對于恒成立,則實數(shù)的取值范圍為()A. B. C. D.4.如圖,在正方體中,,分別是,中點,則異面直線與所成的角是()A. B. C. D.5.若向量滿足:與的夾角為,且,則的最小值是()A.1 B. C. D.26.阿波羅尼斯是古希臘著名的數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時期數(shù)學(xué)三巨匠,他對幾何問題有深刻而系統(tǒng)的研究,阿波羅尼斯圓是他的研究成果之一,指出的是:已知動點M與兩定點A,B的距離之比為,那么點M的軌跡是一個圓,稱之為阿波羅尼斯圓.請解答下面問題:已知,,若直線上存在點M滿足,則實數(shù)c的取值范圍是()A. B. C. D.7.某單位共有老、中、青職工430人,其中有青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()A.9 B.18 C.27 D.368.點到直線的距離是()A. B. C.3 D.9.我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為A.分 B.分 C.分 D.分10.已知向量,向量,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)圖象各點的橫坐標(biāo)縮短為原來的一半,再向左平移個單位,得到的函數(shù)圖象離原點最近的的對稱中心是______.12.在銳角中,角的對邊分別為.若,則角的大小為為____.13.?dāng)?shù)列滿足:(且為常數(shù)),,當(dāng)時,則數(shù)列的前項的和為________.14.____________.15.已知等差數(shù)列的前項和為,若,則_______.16.已知在中,角A,B,C的對邊分別為a,b,c,,,的面積等于,則外接圓的面積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,,,的對邊分別為,,,已知.(1)判斷的形狀;(2)若,,求.18.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.19.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.20.已知扇形的面積為,弧長為,設(shè)其圓心角為(1)求的弧度;(2)求的值.21.設(shè)向量,,.(1)若,求實數(shù)的值;(2)求在方向上的投影.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意可得,則,展開后利用基本不等式,即可求出結(jié)果.【詳解】因為,且,即為,則,當(dāng)且僅當(dāng),即取得等號,則的最小值為.故選:C.【點睛】本題考查基本不等式的應(yīng)用,注意等號成立的條件,考查運算能力,屬于中檔題.2、A【解析】
利用三角形內(nèi)角和為,得到,利用正弦定理求得.【詳解】因為,,所以,在中,,所以,故選A.【點睛】本題考查三角形內(nèi)角和及正弦定理的應(yīng)用,考查基本運算求解能力.3、A【解析】
首先設(shè),將題意轉(zhuǎn)化為,即可,再分類討論求出,解不等式組即可.【詳解】,恒成立,等價于,恒成立.令,對稱軸為.即等價于,即可.當(dāng)時,得到,解得:.當(dāng)時,得到,解得:.當(dāng)時,得到,解得:.綜上所述:.故選:A【點睛】本題主要考查二次不等式的恒成立問題,同時考查了二次函數(shù)的最值問題,分類討論是解題的關(guān)鍵,屬于中檔題.4、D【解析】
如圖,平移直線到,則直線與直線所成角,由于點都是中點,所以,則,而,所以,即,應(yīng)選答案D.5、D【解析】
設(shè)作圖,由可知點在以線段為直徑的圓上,由圖可知,,代入所求不等式利用圓的特征化簡即可.【詳解】如圖,設(shè),取線段的中點為,連接OE交圓于點D,因為即,所以點在以線段為直徑的圓上(E為圓心),且,于是.故選:D【點睛】本題考查向量的線性運算,垂直向量的數(shù)量積表示,幾何圖形在向量運算中的應(yīng)用,屬于中檔題.6、B【解析】
根據(jù)題意設(shè)點M的坐標(biāo)為,利用兩點間的距離公式可得到關(guān)于的一元二次方程,只需即可求解.【詳解】點M在直線上,不妨設(shè)點M的坐標(biāo)為,由直線上存在點M滿足,則,整理可得,,所以實數(shù)c的取值范圍為.故選:B【點睛】本題考查了兩點間的距離公式、一元二次不等式的解法,考查了學(xué)生分析問題解決問題的能力,屬于中檔題.7、B【解析】試題分析:根據(jù)條件中職工總數(shù)和青年職工人數(shù),以及中年和老年職工的關(guān)系列出方程,解出老年職工的人數(shù),根據(jù)青年職工在樣本中的個數(shù),算出每個個體被抽到的概率,用概率乘以老年職工的個數(shù),得到結(jié)果.設(shè)老年職工有x人,中年職工人數(shù)是老年職工人數(shù)的2倍,則中年職工有2x,∵x+2x+160=430,∴x=90,即由比例可得該單位老年職工共有90人,∵在抽取的樣本中有青年職工32人,∴每個個體被抽到的概率是用分層抽樣的比例應(yīng)抽取×90=18人.故選B.考點:分層抽樣點評:本題是一個分層抽樣問題,容易出錯的是不理解分層抽樣的含義或與其它混淆.抽樣方法是數(shù)學(xué)中的一個小知識點,但一般不難,故也是一個重要的得分點,不容錯過8、D【解析】
根據(jù)點到直線的距離求解即可.【詳解】點到直線的距離是.故選:D【點睛】本題主要考查了點到線的距離公式,屬于基礎(chǔ)題.9、B【解析】
首先“冬至”時日影長度最大,為1350分,“夏至”時日影長度最小,為160分,即可求出,進而求出立春”時日影長度為.【詳解】解:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分,且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分.,解得,“立春”時日影長度為:分.故選B.【點睛】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,利用等差數(shù)列的性質(zhì)直接求解.10、C【解析】
設(shè),根據(jù)系數(shù)對應(yīng)關(guān)系即可求解【詳解】設(shè),即,故選:C【點睛】本題考查向量共線的基本運算,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由二倍角公式化簡函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結(jié)合正弦函數(shù)性質(zhì)得對稱中心.【詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對值最小的是,因此所求對稱中心為.故答案為:.【點睛】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質(zhì),考查二倍角公式,掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.12、【解析】由,兩邊同除以得,由余弦定理可得是銳角,,故答案為.13、【解析】
直接利用分組法和分類討論思想求出數(shù)列的和.【詳解】數(shù)列滿足:(且為常數(shù)),,當(dāng)時,則,所以(常數(shù)),故,所以數(shù)列的前項為首項為,公差為的等差數(shù)列.從項開始,由于,所以奇數(shù)項為、偶數(shù)項為,所以,故答案為:【點睛】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項和公式,需熟記公式,同時也考查了分類討論的思想,屬于中檔題.14、【解析】
在分式的分子和分母中同時除以,然后利用常見數(shù)列的極限可計算出所求極限值.【詳解】由題意得.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列的極限是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.15、【解析】
先由題意,得到,求出,再由等差數(shù)列的性質(zhì),即可得出結(jié)果.【詳解】因為等差數(shù)列的前項和為,若,則,所以,因此.故答案為:【點睛】本題主要考查等差數(shù)列的性質(zhì)的應(yīng)用,熟記等差數(shù)列的求和公式,以及等差數(shù)列的性質(zhì)即可,屬于??碱}型.16、4π【解析】
利用三角形面積公式求解,再利用余弦定理求得,進而得到外接圓半徑,再求面積即可.【詳解】由,解得..解得.,解得.∴△ABC外接圓的面積為4π.故答案為:4π.【點睛】本題主要考查了解三角形中正余弦與面積公式的運用,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為直角三角形或等腰三角形(2)【解析】
(1)由正弦定理和題設(shè)條件,得,再利用三角恒等變換的公式,化簡得,進而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【詳解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,則,則或,所以或,所以為直角三角形或等腰三角形.(2)因為,則為等腰三角形,從而,由余弦定理,得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運用余弦定理求解.18、(Ⅰ);(Ⅱ)時,取得最大值2;時,取得最小值.【解析】
(Ⅰ)利用二倍角和兩角和與差以及輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.(Ⅱ)利用x∈[,]上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值.【詳解】(Ⅰ)因為函數(shù)f(x)=4cosxsin(x)1.化簡可得:f(x)=4cosxsinxcos4cos2xsin1sin2x+2cos2x1sin2x+cos2x=2sin(2x)所以的最小正周期為.(Ⅱ)因為,所以.當(dāng),即時,f(x)取得最大值2;當(dāng),即時,f(x)取得最小值-1.【點睛】本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.19、(1)(2)存在,使不等式恒成立,詳見解析.【解析】
(1)由知函數(shù)關(guān)于對稱,求出后,通過構(gòu)造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結(jié)合已知條件,解出;然后設(shè)存在實數(shù),,命題成立,運用根的判別式建立關(guān)于實數(shù)的不等式組,解得.【詳解】(1)由得此時,,構(gòu)造函數(shù),.即的取值范圍是.(2)由對一切實數(shù)恒成立,得由得由得恒成立,也即,此時,.把,.代入,不等式也恒成立,所以,.【點睛】本題第(1)問,常用“反客為主法”,即把參數(shù)當(dāng)成主元,而把看成參數(shù);第(2)問,不等式對任意實數(shù)恒成立,常用賦值法切入問題.20、(1)(2)【解析】
(1)由弧長求出半徑,再由面積求得圓心角;(2)先由誘導(dǎo)公式化簡待求式為,利用兩角差的正切公式可求.【詳解】(1)設(shè)扇形的半徑為r,則,所以.由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年無菌包裝用包裝材料項目規(guī)劃申請報告模范
- 2025年健康護理產(chǎn)品購銷合同書樣本
- 2025年新股權(quán)分配策劃協(xié)議
- 2025年環(huán)境有害生物防治合同
- 2025年健身房個人教練聘請合同范本
- 2025年子女撫養(yǎng)費用分擔(dān)策劃協(xié)議
- 2025年共同研發(fā)知識產(chǎn)權(quán)合同
- 2025年合作雙方產(chǎn)品協(xié)議范本
- 2025年全年圖書選購合作協(xié)議書樣本
- 2025年公園景觀照明設(shè)備定期維護服務(wù)申請協(xié)議
- 數(shù)據(jù)安全重要數(shù)據(jù)風(fēng)險評估報告
- 孝悌課件教學(xué)課件
- 病歷書寫規(guī)范細則(2024年版)
- 2024-2025學(xué)年人教版八年級上冊地理期末測試卷(二)(含答案)
- 做賬實操-牙科診所的賬務(wù)處理
- 《期末總結(jié)》課件
- 雙方共同買車合同范例
- 01-衛(wèi)生法學(xué)與衛(wèi)生法概述課件
- 汽車智能制造技術(shù)課件
- 中醫(yī)外治法課件
- CRISPR-Cas9-基因編輯技術(shù)簡介
評論
0/150
提交評論