版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省利川市第五中學(xué)2025屆高一下數(shù)學(xué)期末監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)點(diǎn)M是直線上的一個(gè)動(dòng)點(diǎn),M的橫坐標(biāo)為,若在圓上存在點(diǎn)N,使得,則的取值范圍是()A. B. C. D.2.為了調(diào)查老師對(duì)微課堂的了解程度,某市擬采用分層抽樣的方法從,,三所中學(xué)抽取60名教師進(jìn)行調(diào)查,已知,,三所學(xué)校中分別有180,270,90名教師,則從學(xué)校中應(yīng)抽取的人數(shù)為()A.10 B.12 C.18 D.243.已知橢圓C:的左右焦點(diǎn)為F1,F2離心率為,過(guò)F2的直線l交C與A,B兩點(diǎn),若△AF1B的周長(zhǎng)為,則C的方程為()A. B. C. D.4.若平面向量,滿足,,且,則等于()A. B. C.2 D.85.甲、乙兩人下棋,甲獲勝的概率為40%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率為()A.50% B.30% C.10% D.60%6.已知底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱的各頂點(diǎn)均在同一個(gè)球面上,則該球的體積為()A. B. C. D.7.若實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.8.等差數(shù)列前項(xiàng)和為,滿足,則下列結(jié)論中正確的是()A.是中的最大值 B.是中的最小值C. D.9.光線自點(diǎn)M(2,3)射到N(1,0)后被x軸反射,則反射光線所在的直線方程為()A. B.C. D.10.已知為第二象限角,則所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限二、填空題:本大題共6小題,每小題5分,共30分。11.若不等式對(duì)于任意都成立,則實(shí)數(shù)的取值范圍是____________.12.已知函數(shù)f(x)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是____________.13.直線與圓交于兩點(diǎn),若為等邊三角形,則______.14.已知為數(shù)列{an}的前n項(xiàng)和,且,,則{an}的首項(xiàng)的所有可能值為_(kāi)_____15.已知圓錐如圖所示,底面半徑為,母線長(zhǎng)為,則此圓錐的外接球的表面積為_(kāi)__.16.如圖,四棱錐中,所有棱長(zhǎng)均為2,是底面正方形中心,為中點(diǎn),則直線與直線所成角的余弦值為_(kāi)___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.中,角的對(duì)邊分別為,且.(I)求角的大?。唬↖I)若,求的最小值.18.設(shè)數(shù)列的前項(xiàng)和,數(shù)列為等比數(shù)列,且.(1)求數(shù)列和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=20.已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.21.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大?。唬?)設(shè),,的最大值為5,求k的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
由題意畫(huà)出圖形,根據(jù)直線與圓的位置關(guān)系可得相切,設(shè)切點(diǎn)為P,數(shù)形結(jié)合找出M點(diǎn)滿足|MP|≤|OP|的范圍,從而得到答案.【詳解】由題意可知直線與圓相切,如圖,設(shè)直線x+y?2=0與圓相切于點(diǎn)P,要使在圓上存在點(diǎn)N,使得,使得最大值大于或等于時(shí)一定存在點(diǎn)N,使得,而當(dāng)MN與圓相切時(shí),此時(shí)|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,根據(jù)數(shù)形結(jié)合思想,畫(huà)圖進(jìn)行分析可得,屬于中等題.2、A【解析】
按照分層抽樣原則,每部分抽取的概率相等,按比例分配給每部分,即可求解.【詳解】,,三所學(xué)校教師總和為540,從中抽取60人,則從學(xué)校中應(yīng)抽取的人數(shù)為人.故選:A.【點(diǎn)睛】本題考查分層抽樣抽取方法,按比例分配是解題的關(guān)鍵,屬于基礎(chǔ)題.3、A【解析】
若△AF1B的周長(zhǎng)為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點(diǎn):橢圓方程及性質(zhì)4、B【解析】
由,可得,再結(jié)合,展開(kāi)可求出答案.【詳解】由,可知,展開(kāi)可得,所以,又,,所以.故選:B.【點(diǎn)睛】本題考查向量數(shù)量積的應(yīng)用,考查學(xué)生的計(jì)算求解能力,注意向量的平方等于模的平方,屬于基礎(chǔ)題.5、A【解析】
甲不輸?shù)母怕实扔诩撰@勝或者平局的概率相加,計(jì)算得到答案.【詳解】甲不輸?shù)母怕实扔诩撰@勝或者平局的概率相加甲、乙下成平局的概率為:故答案選A【點(diǎn)睛】本題考查了互斥事件的概率,意在考查學(xué)生對(duì)于概率的理解.6、C【解析】
根據(jù)題意可知所求的球?yàn)檎睦庵耐饨忧?,根?jù)正四棱柱的特點(diǎn)利用勾股定理可求得外接球半徑,代入球的體積公式求得結(jié)果.【詳解】由題意可知所求的球?yàn)檎睦庵耐饨忧虻酌嬲叫螌?duì)角線長(zhǎng)為:外接球半徑外接球體積本題正確選項(xiàng):【點(diǎn)睛】本題考查正棱柱外接球體積的求解問(wèn)題,關(guān)鍵是能夠根據(jù)正棱柱的特點(diǎn)確定球心位置,從而利用勾股定理求得外接球半徑.7、D【解析】畫(huà)出表示的可行域,如圖所示的開(kāi)放區(qū)域,平移直線,由圖可知,當(dāng)直線經(jīng)過(guò)時(shí),直線在縱軸上的截距取得最大值,此時(shí)有最小值,無(wú)最大值,的取值范圍是,故選A.【方法點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.8、D【解析】本題考查等差數(shù)列的前n項(xiàng)和公式,等差數(shù)列的性質(zhì),二次函數(shù)的性質(zhì).設(shè)公差為則由等差數(shù)列前n項(xiàng)和公式知:是的二次函數(shù);又知對(duì)應(yīng)二次函數(shù)圖像的對(duì)稱軸為于是對(duì)應(yīng)二次函數(shù)為無(wú)法確定所以根據(jù)條件無(wú)法確定有沒(méi)有最值;但是根據(jù)二次函數(shù)圖像的對(duì)稱性,必有即故選D9、B【解析】試題分析:點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),則反射光線即在直線上,由,∴,故選B.考點(diǎn):直線方程的幾種形式.10、A【解析】
用不等式表示第二象限角,再利用不等式的性質(zhì)求出滿足的不等式,從而確定角的終邊在的象限.【詳解】由已知為第二象限角,則則當(dāng)時(shí),此時(shí)在第一象限.當(dāng)時(shí),,此時(shí)在第三象限.故選:A【點(diǎn)睛】本題考查象限角的表示方法,不等式性質(zhì)的應(yīng)用,通過(guò)角滿足的不等式,判斷角的終邊所在的象限.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對(duì)于任意都成立.又令,則,即,解得.所以所求實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本小題主要考查不等式恒成立問(wèn)題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12、(2,4)【解析】
令x-1=1,得到x=2,把x=2代入函數(shù)求出定點(diǎn)的縱坐標(biāo)得解.【詳解】令x-1=1,得到x=2,把x=2代入函數(shù)得,所以定點(diǎn)P的坐標(biāo)為(2,4).故答案為:(2,4)【點(diǎn)睛】本題主要考查對(duì)數(shù)函數(shù)的定點(diǎn)問(wèn)題,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.13、或【解析】
根據(jù)題意可得圓心到直線的距離為,根據(jù)點(diǎn)到直線的距離公式列方程解出即可.【詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點(diǎn)且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【點(diǎn)睛】本題主要考查了直線和圓相交的弦長(zhǎng)公式,以及點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于中檔題.14、【解析】
根據(jù)題意,化簡(jiǎn)得,利用式相加,得到,進(jìn)而得到,即可求解結(jié)果.【詳解】因?yàn)?,所以,所以,將以上各式相加,得,又,所以,解得?【點(diǎn)睛】本題主要考查了數(shù)列的遞推關(guān)系式應(yīng)用,其中解答中利用數(shù)列的遞推關(guān)系式,得到關(guān)于數(shù)列首項(xiàng)的方程求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.15、【解析】
根據(jù)圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,再根據(jù)勾股定理可得求的半徑.【詳解】由圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,設(shè)球心為,球的半徑為,則,圓,因?yàn)?所以,所以,,則有.解得,則.【點(diǎn)睛】本題主要考查了幾何體的外接球,關(guān)鍵是會(huì)找到球心求出半徑,通常結(jié)合勾股定理求.屬于難題.16、.【解析】
以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出直線與直線所成角的余弦值.【詳解】解:四棱錐中,所有棱長(zhǎng)均為2,是底面正方形中心,為中點(diǎn),,平面,以為原點(diǎn),為軸,為軸,為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,,∴,,設(shè)直線與直線所成角為,則,直線與直線所成角的余弦值為.故答案為:.【點(diǎn)睛】本題主要考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(I);(II)最小值為2.【解析】
(I),化簡(jiǎn)即得C的值;(II)【詳解】(I)因?yàn)椋?;(II)由余弦定理可得,,因?yàn)?,所以,?dāng)且僅當(dāng)?shù)淖钚≈禐?.【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形和基本不等式,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(1),;(2)【解析】
(1)通過(guò)求解數(shù)列的通項(xiàng)公式,從而可以求出首項(xiàng)與公比,即可得到的通項(xiàng)公式;(2)化簡(jiǎn),利用錯(cuò)位相減法求解數(shù)列的和即可.【詳解】(1)∴,∴,∵,∴,∴,,∵,,∴,從而,∵數(shù)列為等比數(shù)列∴數(shù)列的公比為,從而;(2)∵,,∴∴∴,∴.【點(diǎn)睛】本題考查已知求的通項(xiàng)公式以及數(shù)列求和,考查計(jì)算能力.在通過(guò)求的通項(xiàng)公式時(shí),不要忽略時(shí)的情況.19、(1)cos(α+β)=2【解析】
(1)根據(jù)向量數(shù)列積的坐標(biāo)運(yùn)算,化簡(jiǎn)整理得到5cos(2)根據(jù)題中條件求出cosα=310再由cos(2α+β)=【詳解】解:(1)因?yàn)閍=(所以a?=5因?yàn)閍?b=2,所以5(2)因?yàn)?<α<π2,因?yàn)?<α<β<π2,所以因?yàn)閏os(α+β)=2所以cos因?yàn)?<α<β<π2,所以0<2α+β<【點(diǎn)睛】本題主要考查三角恒等變換,熟記兩角和的余弦公式即可,屬于常考題型.20、(1);(2)證明見(jiàn)解析,;(3)或.【解析】
(1)運(yùn)用數(shù)列的遞推式以及數(shù)列的和與通項(xiàng)的關(guān)系可得,再由等比數(shù)列的定義、通項(xiàng)公式可得結(jié)果;(2)對(duì)等式兩邊除以,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(3)求得,由數(shù)列的錯(cuò)位相減法求和,可得,化簡(jiǎn),即,對(duì)任意的成立,運(yùn)用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.【詳解】(1),可得,即;時(shí),,又,相減可得,即,則;(2)證明:,可得,可得是首項(xiàng)和公差均為1的等差數(shù)列,可得,即;(3),前n項(xiàng)和為,,相減可得,可得,,即為,即,對(duì)任意的成立,由,可得為遞
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工廠生產(chǎn)承包合同
- 2024貨運(yùn)合同格式范本新版范文
- 2024新版廣告合同范本
- 定制辦公桌椅及安裝協(xié)議
- 投資合作談判技巧
- 招標(biāo)代理合作協(xié)議樣本
- 房建工程施工分包協(xié)議
- 戶外廣告業(yè)務(wù)合作合同參考
- 廣東省室內(nèi)裝潢設(shè)計(jì)合同樣本
- 3.1.1橢圓的標(biāo)準(zhǔn)方程【同步課件】
- 2024至2030年中國(guó)自動(dòng)車配件行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024-2030年中國(guó)蔗糖行業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與投資前景研究報(bào)告
- 北師版 七上 數(shù)學(xué) 第四章 基本平面圖形《角-第2課時(shí) 角的大小比較》課件
- 外研版小學(xué)英語(yǔ)(三起點(diǎn))六年級(jí)上冊(cè)期末測(cè)試題及答案(共3套)
- 北師大版(2024新版)七年級(jí)上冊(cè)生物期中學(xué)情調(diào)研測(cè)試卷(含答案)
- 產(chǎn)品包裝規(guī)范管理制度
- 2024年海南省中考物理試題卷(含答案)
- 2024統(tǒng)編新版小學(xué)三年級(jí)語(yǔ)文上冊(cè)第八單元:大單元整體教學(xué)設(shè)計(jì)
- 第07講 物態(tài)變化(原卷版)-2024全國(guó)初中物理競(jìng)賽試題編選
- 高危兒規(guī)范化健康管理專家共識(shí)解讀
- DB61T1521.5-2021奶山羊養(yǎng)殖技術(shù)規(guī)范 第5部分:后備羊培育
評(píng)論
0/150
提交評(píng)論