廣東省清連中學(xué)高三下學(xué)期一模考試新高考數(shù)學(xué)試題及答案解析_第1頁
廣東省清連中學(xué)高三下學(xué)期一??荚囆赂呖紨?shù)學(xué)試題及答案解析_第2頁
廣東省清連中學(xué)高三下學(xué)期一模考試新高考數(shù)學(xué)試題及答案解析_第3頁
廣東省清連中學(xué)高三下學(xué)期一??荚囆赂呖紨?shù)學(xué)試題及答案解析_第4頁
廣東省清連中學(xué)高三下學(xué)期一模考試新高考數(shù)學(xué)試題及答案解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省清連中學(xué)高三下學(xué)期一模考試新高考數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量與的夾角為,,,則()A. B.0 C.0或 D.2.在中,內(nèi)角所對(duì)的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列3.設(shè)集合則()A. B. C. D.4.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對(duì)任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.6.若向量,,則與共線的向量可以是()A. B. C. D.7.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.8.函數(shù)的值域?yàn)椋ǎ〢. B. C. D.9.拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),,則()A. B. C. D.10.函數(shù)的最大值為,最小正周期為,則有序數(shù)對(duì)為()A. B. C. D.11.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.12.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面五邊形中,,,,且.將五邊形沿對(duì)角線折起,使平面與平面所成的二面角為,則沿對(duì)角線折起后所得幾何體的外接球的表面積是______.14.如圖,在正四棱柱中,P是側(cè)棱上一點(diǎn),且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.15.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為________.16.函數(shù)的定義域是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大?。唬?)若△ABC外接圓的半徑為,求△ABC面積的最大值.18.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足,,,,恰為等比數(shù)列的前3項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和為;若對(duì)均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.19.(12分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.20.(12分)已知都是大于零的實(shí)數(shù).(1)證明;(2)若,證明.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若恒成立,求的取值范圍.22.(10分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算和向量的模長(zhǎng)平方等于向量的平方,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.3、C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.4、A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對(duì)稱且在上為減函數(shù),則不等式等價(jià)于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對(duì)稱,因?yàn)閷?duì)任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.5、A【解析】

由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.6、B【解析】

先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對(duì)應(yīng),縱坐標(biāo)與縱坐標(biāo)對(duì)應(yīng),切不可錯(cuò)位.7、C【解析】

根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.8、A【解析】

由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域?yàn)?故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對(duì)象角的取值范圍,考查計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】

根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.10、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B11、C【解析】程序在運(yùn)行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.12、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點(diǎn)為幾何體外接球的球心,結(jié)合三角形的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質(zhì)可知,直線與的交點(diǎn)為幾何體外接球的球心,取的中點(diǎn),連接,,由條件得,,連接,因?yàn)椋瑥亩?,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及多面體的外接球的表面積的計(jì)算,其中解答中熟記空間幾何體的結(jié)構(gòu)特征,求得外接球的半徑是解答的關(guān)鍵,著重考查了空間想象能力與運(yùn)算求解能力,屬于中檔試題.14、【解析】

設(shè)正四棱柱的底面邊長(zhǎng),高,再根據(jù)柱體、錐體的體積公式計(jì)算可得.【詳解】解:設(shè)正四棱柱的底面邊長(zhǎng),高,則,即故答案為:【點(diǎn)睛】本題考查柱體、錐體的體積計(jì)算,屬于基礎(chǔ)題.15、【解析】

依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.16、【解析】解:因?yàn)?,故定義域?yàn)槿?、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)B(2)【解析】

(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進(jìn)行化簡(jiǎn)可求cosB,進(jìn)而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因?yàn)閎(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因?yàn)?,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因?yàn)閍2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),即ac的最大值4,所以△ABC面積S即面積的最大值.【點(diǎn)睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.18、(2),(2),的最大整數(shù)是2.(3)存在,【解析】

(2)由可得(),然后把這兩個(gè)等式相減,化簡(jiǎn)得,公差為2,因?yàn)?,,為等比?shù)列,所以,化簡(jiǎn)計(jì)算得,,從而得到數(shù)列的通項(xiàng)公式,再計(jì)算出,,,從而可求出數(shù)列的通項(xiàng)公式;(2)令,化簡(jiǎn)計(jì)算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個(gè)可看成一個(gè)數(shù)列的前項(xiàng)和,再寫出其前()項(xiàng)和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時(shí),,即當(dāng)時(shí),①②①-②得,整理得,又因?yàn)楦黜?xiàng)均為正數(shù)的數(shù)列.故是從第二項(xiàng)的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項(xiàng),故,解得.又,故,因?yàn)橐渤闪ⅲ适且詾槭醉?xiàng),2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項(xiàng),故是以為首項(xiàng),公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對(duì)均滿足,只要的最小值大于即可因?yàn)榈淖钚≈禐椋?,所以的最大整?shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點(diǎn)睛】此題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,最值,恒成立問題,考查了推理能力與計(jì)算能力,屬于中檔題.19、(1),;(2);(3)不能,證明見解析【解析】

(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價(jià)于對(duì)任意恒成立,即時(shí),,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【詳解】(1),,曲線在點(diǎn)處的切線方程為,,解得.(2)記,整理得,由題知,對(duì)任意恒成立,對(duì)任意恒成立,即時(shí),,,解得,當(dāng)時(shí),對(duì)任意,,,,,即在單調(diào)遞增,此時(shí),實(shí)數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個(gè)不同的實(shí)根,以下給出證明:記,,則關(guān)于的方程有三個(gè)不同的實(shí)根,等價(jià)于函數(shù)有三個(gè)零點(diǎn),,當(dāng)時(shí),,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個(gè)零點(diǎn);當(dāng)時(shí),記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個(gè)零點(diǎn),則至多有兩個(gè)單調(diào)區(qū)間,至多有兩個(gè)零點(diǎn).因此,不可能有三個(gè)零點(diǎn).關(guān)于的方程不可能有三個(gè)不同的實(shí)根.【點(diǎn)睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點(diǎn)存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.20、(1)答案見解析.(2)答案見解析【解析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.21、(1);(2).【解析】

分析:(1)先根據(jù)絕對(duì)值幾何意義將不等式化為三個(gè)不等式組,分別求解,最后求并集,(2)先化簡(jiǎn)不等式為,再根據(jù)絕對(duì)值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當(dāng)時(shí),可得的解集為.(2)等價(jià)于.而,且當(dāng)時(shí)等號(hào)成立.故等價(jià)于.由可得或,所以的取值范圍是.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論