版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇新沂一中2025屆高一下數(shù)學期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.數(shù)列的首項為,為等差數(shù)列,且(),若,,則()A. B. C. D.2.已知,滿足,則()A. B. C. D.3.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線4.延長正方形的邊至,使得.若動點從點出發(fā),沿正方形的邊按逆時針方向運動一周回到點,若,下列判斷正確的是()A.滿足的點必為的中點B.滿足的點有且只有一個C.的最小值不存在D.的最大值為5.在中,角的對邊分別是,已知,則()A. B. C. D.或6.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,707.在數(shù)列中,,,則的值為:A.52 B.51 C.50 D.498.不等式的解集為,則不等式的解集為()A.或 B. C. D.或9.在等差數(shù)列中,,則等于()A.2 B.18 C.4 D.910.已知數(shù)列的通項為,我們把使乘積為整數(shù)的叫做“優(yōu)數(shù)”,則在內(nèi)的所有“優(yōu)數(shù)”的和為()A.1024 B.2012 C.2026 D.2036二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,若,則____12.在一個不透明的布袋中,紅色,黑色,白色的玻璃球共有40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn)其中摸到紅色球,黑色球的頻率穩(wěn)定在15%和45%,則口袋中白色球的個數(shù)可能是_________個.13.已知函數(shù)在時取得最小值,則________.14.的值為________.15.200名職工年齡分布如圖所示,從中隨機抽取40名職工作樣本,采用系統(tǒng)抽樣方法,按1~200編號,分為40組,分別為1~5,6~10,…,196~200,若第5組抽取號碼為22,則第8組抽取號碼為________.若采用分層抽樣,40歲以下年齡段應抽取________人.16.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期和上的單調增區(qū)間:(2)若對任意的和恒成立,求實數(shù)的取值范圍.18.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)若,求的值.19.設函數(shù).(1)求不等式的解集;(2)若對于,恒成立,求的取值范圍.20.已知.(1)求的值:(2)求的值.21.已知一個幾何體是由一個直角三角形繞其斜邊旋轉一周所形成的.若該三角形的周長為12米,三邊長由小到大依次為a,b,c,且b恰好為a,c的算術平均數(shù).(1)求a,b,c;(2)若在該幾何體的表面涂上一層油漆,且每平方米油漆的造價為5元,求所涂的油漆的價格.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題意可設等差數(shù)列的首項為,公差為,所以所以,所以,即=2n-8,=,所以,選B.2、A【解析】
根據(jù)對數(shù)的化簡公式得到,由指數(shù)的運算公式得到=,由對數(shù)的性質得到>0,,進而得到結果.【詳解】已知,=,>0,進而得到.故答案為A.【點睛】本題考查了指對函數(shù)的運算公式和對數(shù)函數(shù)的性質;比較大小常用的方法有:兩式做差和0比較,分式注意同分,進行因式分解為兩式相乘的形式;或者利用不等式求得最值,判斷最值和0的關系.3、B【解析】試題分析:根據(jù)平面的基本性質及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質及推論知B正確.故選B.考點:平面的基本性質及推論.4、D【解析】試題分析:設正方形的邊長為1,建立如圖所示直角坐標系,則的坐標為,則設,由得,所以,當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;當在線段上時,,此時,此時,所以;由以上討論可知,當時,可為的中點,也可以是點,所以A錯;使的點有兩個,分別為點與中點,所以B錯,當運動到點時,有最小值,故C錯,當運動到點時,有最大值,所以D正確,故選D.考點:向量的坐標運算.【名師點睛】本題考查平面向量線性運算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標化是聯(lián)系圖形與代數(shù)運算的渠道,通過構建直角坐標系,使得向量運算完全代數(shù)化,通過加、減、數(shù)乘的運算法則,實現(xiàn)了數(shù)形的緊密結合,同時將參數(shù)的取值范圍問題轉化為求目標函數(shù)的取值范圍問題,在解題過程中,還常利用向量相等則坐標相同這一原則,通過列方程(組)求解,體現(xiàn)方程思想的應用.5、B【解析】
由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點:正弦定理6、B【解析】試題分析:由等差數(shù)列的通項公式得,公差,所以,可能為,的所有可能取值為選.考點:1.等差數(shù)列及其通項公式;2.數(shù)的整除性.7、A【解析】
由,得到,進而得到數(shù)列首項為2,公差為的等差數(shù)列,利用等差數(shù)列的通項公式,即可求解,得到答案.【詳解】由題意,數(shù)列滿足,即,又由,所以數(shù)列首項為2,公差為的等差數(shù)列,所以,故選A.【點睛】本題主要考查了等差數(shù)列的定義,以及等差數(shù)列的通項公式的應用,其中解答中熟記等差數(shù)列的定義,以及等差數(shù)列的通項公式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、A【解析】不等式的解集為,的兩根為,,且,即,解得則不等式可化為解得故選9、D【解析】
利用等差數(shù)列性質得到,,計算得到答案.【詳解】等差數(shù)列中,故選:D【點睛】本題考查了等差數(shù)列的計算,利用性質可以簡化運算,是解題的關鍵.10、C【解析】
根據(jù)優(yōu)數(shù)的定義,結合對數(shù)運算,求得的范圍,再用等比數(shù)列的前項和公式進行求和.【詳解】根據(jù)優(yōu)數(shù)的定義,令,則可得令,解得則在內(nèi)的所有“優(yōu)數(shù)”的和為:故選:C.【點睛】本題考查新定義問題,本質是考查對數(shù)的運算,等比數(shù)列前項和公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,,得的坐標,根據(jù)得,由向量數(shù)量積的坐標表示即可得結果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點睛】本題主要考查了向量的坐標運算,兩向量垂直與數(shù)量積的關系,屬于基礎題.12、16【解析】
根據(jù)紅色球和黑色球的頻率穩(wěn)定值,計算紅色球和黑色球的個數(shù),從而得到白色球的個數(shù).【詳解】根據(jù)概率是頻率的穩(wěn)定值的意義,紅色球的個數(shù)為個;黑色球的個數(shù)為個;故白色球的個數(shù)為4個.故答案為:16.【點睛】本題考查概率和頻率之間的關系:概率是頻率的穩(wěn)定值.13、【解析】試題分析:因為,所以,當且僅當即,由題意,解得考點:基本不等式14、【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式,結合根式運算,化簡求得表達式的值.【詳解】依題意,由于,所以故答案為:【點睛】本小題主要考查同角三角函數(shù)的基本關系式、二倍角公式,考查根式運算,屬于基礎題.15、371【解析】
由系統(tǒng)抽樣,編號是等距出現(xiàn)的規(guī)律可得,分層抽樣是按比例抽取人數(shù).【詳解】第8組編號是22+5+5+5=37,分層抽樣,40歲以下抽取的人數(shù)為50%×40=1(人).故答案為:37;1.【點睛】本題考查系統(tǒng)抽樣和分層抽樣,屬于基礎題.16、【解析】
可設,表示出S關于的函數(shù),從而轉化為三角函數(shù)的最大值問題.【詳解】設,則,,,當時,.【點睛】本題主要考查函數(shù)的實際運用,三角函數(shù)最值問題,意在考查學生的劃歸能力,分析能力和數(shù)學建模能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)T=π,單調增區(qū)間為,(2)【解析】
(1)化簡函數(shù)得到,再計算周期和單調區(qū)間.(2)分情況的不同奇偶性討論,根據(jù)函數(shù)的最值得到答案.【詳解】解:(1)函數(shù)故的最小正周期.由題意可知:,解得:,因為,所以的單調增區(qū)間為,(2)由(1)得∵∴,∴,若對任意的和恒成立,則的最小值大于零.當為偶數(shù)時,,所以,當為奇數(shù)時,,所以,綜上所述,的范圍為.【點睛】本題考查了三角函數(shù)化簡,周期,單調性,恒成立問題,綜合性強,意在考查學生的計算能力和綜合應用能力.18、(1);(2)4.【解析】
(1)運用等差數(shù)列的性質求得公差d,再由及d求得通項公式即可.(2)利用前n項和公式直接求解即可.【詳解】(1)設數(shù)列的公差為,∴,故.(2),∴,解得或(舍去),∴.【點睛】本題考查等差數(shù)列的通項公式及項數(shù)的求法,考查了前n項和公式的應用,是基礎題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.19、(1)見解析;(2).【解析】
(1)由得,然后分、、三種情況來解不等式;(2)由恒成立,由參變量分離法得出,并利用基本不等式求出在上的最小值,即可得出實數(shù)的取值范圍.【詳解】(1),,.當時,不等式的解集為;當時,原不等式為,該不等式的解集為;當時,不等式的解集為;(2)由題意,當時,恒成立,即時,恒成立.由基本不等式得,當且僅當時,等號成立,所以,,因此,實數(shù)的取值范圍是.【點睛】本題考查含參二次不等式的解法,同時也考查了利用二次不等式恒成立求參數(shù)的取值范圍,在含單參數(shù)的二次不等式恒成立問題時,可充分利用參變量分離法,轉化為函數(shù)的最值來求解,可避免分類討論,考查化歸與轉化思想的應用,屬于中等題.20、(1);(2)【解析】
(1)利用平方關系、誘導公式以及誘導公式即可求解;(2)利用輔助角公式以及二倍角的正弦公式化簡即可求值.【詳解】(1)因為且所以;(2).【點睛】本題主要考查了三角函數(shù)的化簡與求值,關鍵是利用誘導公式、同角三角函數(shù)的基本關系以及輔助角公式來求解,屬于中檔題.21、(1)3,4,1;(2)元.【解析】
(1)由題意,根據(jù)周長、三邊關系、勾股定理,a,b,c,建立方程組,解得即可.(2)根據(jù)題意,旋轉得到的幾何體為由底面半徑為米,母線長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度汽車租賃與智能交通系統(tǒng)對接合同3篇
- 2025-2030全球全自動農(nóng)業(yè)機器人行業(yè)調研及趨勢分析報告
- 2024年全國數(shù)控技能大賽理論考試題庫-上(單選題) (二)
- 2025年度鋼管架施工設備租賃合同樣本
- 2025年度個人反擔保合同糾紛解決協(xié)議
- 2025年度數(shù)字電視信號接收器采購合同4篇
- 2025版施工合同擔保人資質審核及責任規(guī)范3篇
- 教育者與科技聯(lián)手強化校園安全措施
- 2025年度商鋪物業(yè)管理與商業(yè)策略規(guī)劃合同4篇
- 二零二五年度茶館社區(qū)服務合作協(xié)議4篇
- 定額〔2025〕1號文-關于發(fā)布2018版電力建設工程概預算定額2024年度價格水平調整的通知
- 2024年城市軌道交通設備維保及安全檢查合同3篇
- 電力溝施工組織設計-電纜溝
- 單位往個人轉賬的合同(2篇)
- 科研倫理審查與違規(guī)處理考核試卷
- GB/T 44101-2024中國式摔跤課程學生運動能力測評規(guī)范
- 鍋爐本體安裝單位工程驗收表格
- 一種基于STM32的智能門鎖系統(tǒng)的設計-畢業(yè)論文
- 高危妊娠的評估和護理
- 妊娠合并強直性脊柱炎的護理查房
- 2024年山東鐵投集團招聘筆試參考題庫含答案解析
評論
0/150
提交評論