天津市北辰區(qū)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
天津市北辰區(qū)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
天津市北辰區(qū)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
天津市北辰區(qū)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
天津市北辰區(qū)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

天津市北辰區(qū)2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,若,則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不能確定2.如圖,在圓內(nèi)隨機(jī)撒一把豆子,統(tǒng)計(jì)落在其內(nèi)接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內(nèi)的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n3.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.4.已知數(shù)列為等比數(shù)列,且,則()A. B. C. D.5.某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相對于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)6.已知向量,且,則的值為()A.1 B.2 C. D.37.已知圓(為圓心,且在第一象限)經(jīng)過,,且為直角三角形,則圓的方程為()A. B.C. D.8.已知向量,且,則與的夾角為()A. B. C. D.9.設(shè)△ABC的內(nèi)角A、B、C所對邊分別為a、b、c,若a=3,b=,A=,則B=()A. B.或 C. D.或10.設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,若a1>0,A.S10 B.S11 C.S二、填空題:本大題共6小題,每小題5分,共30分。11.在等比數(shù)列中,,公比,若,則的值為.12.某四棱錐的三視圖如圖所示,如果網(wǎng)格紙上小正方形的邊長為1,那么該四棱錐最長棱的棱長為.13.已知角的終邊經(jīng)過點(diǎn),若,則______.14.用數(shù)學(xué)歸納法證明不等式“(且)”的過程中,第一步:當(dāng)時(shí),不等式左邊應(yīng)等于__________。15.已知直線過點(diǎn),且在兩坐標(biāo)軸上的截距相等,則此直線的方程為_____________.16.不等式的解集為_________________;三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)求;(2)求函數(shù)在區(qū)間上的值域.18.已知等比數(shù)列的公比,且的等差中項(xiàng)為10,.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.19.已知四棱錐的底面ABCD是菱形,平面ABCD,,,F(xiàn),G分別為PD,BC中點(diǎn),.(Ⅰ)求證:平面PAB;(Ⅱ)求三棱錐的體積;(Ⅲ)求證:OP與AB不垂直.20.已知夾角為,且,,求:(1);(2)與的夾角.21.已知向量是夾角為的單位向量,,(1)求;(2)當(dāng)m為何值時(shí),與平行?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

由正弦定理得,再由余弦定理求得,得到,即可得到答案.【詳解】因?yàn)樵谥校瑵M足,由正弦定理知,代入上式得,又由余弦定理可得,因?yàn)镃是三角形的內(nèi)角,所以,所以為鈍角三角形,故選A.【點(diǎn)睛】本題主要考查了利用正弦定理、余弦定理判定三角形的形狀,其中解答中合理利用正、余弦定理,求得角C的范圍是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、B【解析】試題分析:設(shè)正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點(diǎn):幾何概型.【方法點(diǎn)睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點(diǎn)容易造成失分,在備考時(shí)要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯(cuò)誤;(2)基本事件對應(yīng)的區(qū)域測度把握不準(zhǔn)導(dǎo)致錯(cuò)誤;(3)利用幾何概型的概率公式時(shí),忽視驗(yàn)證事件是否等可能性導(dǎo)致錯(cuò)誤.3、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點(diǎn):由圖象確定函數(shù)解析式.4、A【解析】

根據(jù)等比數(shù)列性質(zhì)知:,得到答案.【詳解】已知數(shù)列為等比數(shù)列故答案選A【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),屬于簡單題.5、A【解析】

觀察折線圖可知月接待游客量每年7,8月份明顯高于12月份,且折線圖呈現(xiàn)增長趨勢,高峰都出現(xiàn)在7、8月份,1月至6月的月接待游客量相對于7月至12月波動(dòng)性更小.【詳解】對于選項(xiàng)A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯(cuò);對于選項(xiàng)B,觀察折線圖的變化趨勢可知年接待游客量逐年增加,故B正確;對于選項(xiàng)C,D,由圖可知顯然正確.故選A.【點(diǎn)睛】本題考查折線圖,考查考生的識圖能力,屬于基礎(chǔ)題.6、A【解析】

由,轉(zhuǎn)化為,結(jié)合數(shù)量積的坐標(biāo)運(yùn)算得出,然后將所求代數(shù)式化為,并在分子分母上同時(shí)除以,利用弦化切的思想求解.【詳解】由題意可得,即.∴,故選A.【點(diǎn)睛】本題考查垂直向量的坐標(biāo)表示以及同角三角函數(shù)的基本關(guān)系,考查弦化切思想的應(yīng)用,一般而言,弦化切思想應(yīng)用于以下兩方面:(1)弦的分式齊次式:當(dāng)分式是關(guān)于角弦的次分式齊次式,分子分母同時(shí)除以,可以將分式由弦化為切;(2)弦的二次整式或二倍角的一次整式:先化為角的二次整式,然后除以化為弦的二次分式齊次式,并在分子分母中同時(shí)除以可以實(shí)現(xiàn)弦化切.7、D【解析】

設(shè)且,半徑為,根據(jù)題意列出方程組,求得的值,即可求解.【詳解】依題意,圓經(jīng)過點(diǎn),可設(shè)且,半徑為,則,解得,所以圓的方程為.【點(diǎn)睛】本題主要考查了圓的標(biāo)準(zhǔn)方程的求解,其中解答中熟記圓的標(biāo)準(zhǔn)方程的形式,以及合理應(yīng)用圓的性質(zhì)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.8、D【解析】

直接由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】設(shè)與的夾角為,由,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積公式.9、A【解析】

由已知利用正弦定理可求的值,利用大邊對大角可求為銳角,利用特殊角的三角函數(shù)值,即可得解.【詳解】由題意知,由正弦定理,可得==,又因?yàn)?,可得B為銳角,所以.故選A.【點(diǎn)睛】本題主要考查了正弦定理,大邊對大角,特殊角的三角函數(shù)值在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.10、C【解析】分析:利用等差數(shù)列的通項(xiàng)公式,化簡求得a20+a詳解:在等差數(shù)列an中,a則3(a1+7d)=5(a1所以a20又由a1>0,所以a20>0,a21<0點(diǎn)睛:本題考查了等差數(shù)列的通項(xiàng)公式,及等差數(shù)列的前n項(xiàng)和Sn的性質(zhì),其中解答中根據(jù)等差數(shù)列的通項(xiàng)公式,化簡求得a20+二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

因?yàn)?,,故答案?.考點(diǎn):等比數(shù)列的通項(xiàng)公式.12、【解析】

先通過拔高法還原三視圖為一個(gè)四棱錐,再根據(jù)圖像找到最長棱計(jì)算即可?!驹斀狻扛鶕?jù)拔高法還原三視圖,可得斜棱長最長,所以斜棱長為?!军c(diǎn)睛】此題考查簡單三視圖還原,關(guān)鍵點(diǎn)通過拔高法將三視圖還原易求解,屬于較易題目。13、【解析】

利用三角函數(shù)的定義可求.【詳解】由三角函數(shù)的定義可得,故.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的定義,注意根據(jù)正弦的定義構(gòu)建關(guān)于的方程,本題屬于基礎(chǔ)題.14、【解析】

用數(shù)學(xué)歸納法證明不等式(且),第一步,即時(shí),分母從3到6,列出式子,得到答案.【詳解】用數(shù)學(xué)歸納法證明不等式(且),第一步,時(shí),左邊式子中每項(xiàng)的分母從3開始增大至6,所以應(yīng)是.即為答案.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的基本步驟,屬于簡單題.15、或【解析】

分兩種情況考慮,第一:當(dāng)所求直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)出該直線的方程為,把已知點(diǎn)坐標(biāo)代入即可求出的值,得到直線的方程;第二:當(dāng)所求直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為,把已知點(diǎn)的坐標(biāo)代入即可求出的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.【詳解】解:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為,把代入所設(shè)的方程得:,則所求直線的方程為即;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為,把代入所求的方程得:,則所求直線的方程為即.綜上,所求直線的方程為:或.故答案為:或【點(diǎn)睛】此題考查學(xué)生會(huì)根據(jù)條件設(shè)出直線的截距式方程和點(diǎn)斜式方程,考查了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.16、【解析】

根據(jù)絕對值定義去掉絕對值符號后再解不等式.【詳解】時(shí),原不等式可化為,,∴;時(shí),原不等式可化為,,∴.綜上原不等式的解為.故答案為.【點(diǎn)睛】本題考查解絕對值不等式,解絕對值不等式的常用方法是根據(jù)絕對值定義去掉絕對值符號,然后求解.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)把直接帶入,或者先化簡(2)化簡得,,根據(jù)求出的范圍即可解決.【詳解】(1)因?yàn)?,,所以;?)當(dāng)時(shí),,所以,所以.【點(diǎn)睛】本題主要考查了三角函數(shù)的問題,對于三角函數(shù)需要記住??嫉囊恍┬再|(zhì):圖像、周期、最值、單調(diào)性、對稱軸等.屬于中等題.18、(Ⅰ).(Ⅱ)【解析】

(Ⅰ)利用已知條件求出首項(xiàng)與公差,然后根據(jù)等比數(shù)列的通項(xiàng)公式,即可求出結(jié)果;(Ⅱ)先求出,再利用錯(cuò)位相減法求數(shù)列的前項(xiàng)和.【詳解】解析:(Ⅰ)由題意可得:,∴∵,∴,∴數(shù)列的通項(xiàng)公式為.(Ⅱ),∴上述兩式相減可得∴=【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式的求法,以及利用錯(cuò)位相減法求和,考查計(jì)算能力,屬于基礎(chǔ)題.19、(Ⅰ)見解析(Ⅱ)(Ⅲ)見解析【解析】

(Ⅰ)連接,,由已知結(jié)合三角形中位線定理可得平面,再由面面平行的判斷可得平面平面,進(jìn)而可得平面;(Ⅱ)首先證明平面,而為的中點(diǎn),然后利用等積法求三棱錐的體積;(Ⅲ)直接利用反證法證明與不垂直.【詳解】(Ⅰ)如圖,連接,∵是中點(diǎn),是中點(diǎn),∴,而平面,平面,∴平面,又∵是中點(diǎn),是中點(diǎn),∴,而平面,平面,∴平面,又∴平面平面,即平面.(Ⅱ)∵底面,∴,又四邊形為菱形,∴,又,∴平面,而為的中點(diǎn),∴.(Ⅲ)假設(shè),又,且,∴平面,則,與矛盾,∴假設(shè)錯(cuò)誤,故與不垂直.【點(diǎn)睛】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓(xùn)練了利用反證法證明線線垂直問題,訓(xùn)練了利用等積法求解多面體的體積,屬于中檔題.20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論