版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆甘肅省蘭州市一中高一下數(shù)學期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),在中,內角的對邊分別是,內角滿足,若,則的周長的取值范圍為()A. B. C. D.2.設a>0,b>0,若是和的等比中項,則的最小值為()A.6 B. C.8 D.93.已知不等式的解集為,則不等式的解集為()A. B.C. D.4.設l是直線,,是兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.在等比數(shù)列中,,,則()A. B.C. D.6.已知,,當時,不等式恒成立,則的取值范圍是A. B. C. D.7.已知圓,設平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.498.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A. B. C. D.9.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.2410.直線(,)過點(-1,-1),則的最小值為()A.9 B.1 C.4 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.已知關于實數(shù)x,y的不等式組構成的平面區(qū)域為,若,使得恒成立,則實數(shù)m的最小值是______.12.數(shù)列滿足,,則___________.13.設()則數(shù)列的各項和為________14.若等差數(shù)列和等比數(shù)列滿足,,則_______.15.若一組樣本數(shù)據(jù),,,,的平均數(shù)為,則該組樣本數(shù)據(jù)的方差為16.如圖,正方體ABCD﹣A1B1C1D1的棱長為1,M為B1C1中點,連接A1B,D1M,則異面直線A1B和D1M所成角的余弦值為________________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調遞增區(qū)間.18.求過三點的圓的方程,并求這個圓的半徑和圓心坐標.19.在中,內角對邊分別為,,,已知.(1)求的值;(2)若,,求的面積.20.的內角,,的對邊分別為,,,為邊上一點,為的角平分線,,.(1)求的值:(2)求面積的最大值.21.在平面直角坐標系中,點,點P在x軸上(1)若,求點P的坐標:(2)若的面積為10,求點P的坐標.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先根據(jù)降冪公式以及輔助角公式化簡,把帶入利用余弦定理以及基本不等式即可.【詳解】由題意得,為三角形內角所以,所以,因為,所以,,當且僅當時取等號,因為,所以,所以選擇B【點睛】本題主要考查了三角函數(shù)的化簡,以及余弦定理和基本不等式.在化簡的過程中常用到的公式有輔助角、二倍角、兩角和與差的正弦、余弦等.屬于中等題.2、D【解析】
試題分析:由題意a>0,b>0,且是和的等比中項,即,則,當且僅當時,即時取等號.考點:重要不等式,等比中項3、B【解析】
首先根據(jù)題意得到,為方程的根,再解出的值帶入不等式即可.【詳解】有題知:,為方程的根.所以,解得.所以,解得:或.故選:B【點睛】本題主要考查二次不等式的求法,同時考查了學生的計算能力,屬于簡單題.4、D【解析】
利用空間線線、線面、面面的位置關系對選項進行逐一判斷,即可得到答案.【詳解】A.若,,則與可能平行,也可能相交,所以不正確.B.若,,則與可能的位置關系有相交、平行或,所以不正確.C.若,,則可能,所以不正確.D.若,,由線面平行的性質過的平面與相交于,則,又.
所以,所以有,所以正確.故選:D【點睛】本題考查面面平行、垂直的判斷,線面平行和垂直的判斷,屬于基礎題.5、B【解析】
設等比數(shù)列的公比為,由等比數(shù)列的定義知與同號,再利用等比中項的性質可求出的值.【詳解】設等比數(shù)列的公比為,則,,.由等比中項的性質可得,因此,,故選:B.【點睛】本題考查等比中項性質的應用,同時也要利用等比數(shù)列的定義判斷出項的符號,考查運算求解能力,屬于中等題.6、B【解析】
根據(jù)為定值,那么乘以后值不變,由基本不等式可消去x,y后,對得到的不等式因式分解,即可解得m的值.【詳解】因為,,,所以.因為不等式恒成立,所以,整理得,解得,即.【點睛】本題考查基本不等式,由為定值和已知不等式相乘來構造基本不等式,最后含有根式的因式分解也是解題關鍵.7、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因為圓心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當圓心C位于B點時,取得最大值,B點的坐標為,即時是最大值.考點:線性規(guī)劃綜合問題.8、B【解析】分析:首先根據(jù)正方形的面積求得正方形的邊長,從而進一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關公式求得圓柱的表面積.詳解:根據(jù)題意,可得截面是邊長為的正方形,結合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.點睛:該題考查的是有關圓柱的表面積的求解問題,在解題的過程中,需要利用題的條件確定圓柱的相關量,即圓柱的底面圓的半徑以及圓柱的高,在求圓柱的表面積的時候,一定要注意是兩個底面圓與側面積的和.9、D【解析】設放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D10、A【解析】
將點的坐標代入直線方程:,再利用乘1法求最值【詳解】將點的坐標代入直線方程:,,當且僅當時取等號【點睛】已知和為定值,求倒數(shù)和的最小值,利用乘1法求最值。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內的點與定點距離的平方,因此結合平面區(qū)域即可求出結果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標函數(shù),則目標函數(shù)表示平面區(qū)域內的點與定點距離的平方,由圖像易知,點到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點睛】本題主要考查簡單的線性規(guī)劃問題,只需分析清楚目標函數(shù)的幾何意義,即可結合可行域來求解,屬于??碱}型.12、2【解析】
利用遞推公式求解即可.【詳解】由題得.故答案為2【點睛】本題主要考查利用遞推公式求數(shù)列中的項,意在考查學生對這些知識的理解掌握水平,屬于基礎題.13、【解析】
根據(jù)無窮等比數(shù)列的各項和的計算方法,即可求解,得到答案.【詳解】由題意,數(shù)列的通項公式為,且,所以數(shù)列的各項和為.故答案為:.【點睛】本題主要考查了無窮等比數(shù)列的各項和的求解,其中解答中熟記無窮等比數(shù)列的各項和的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、【解析】
設等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題中條件求出、的值,進而求出和的值,由此可得出的值.【詳解】設等差數(shù)列的公差和等比數(shù)列的公比分別為和,則,求得,,那么,故答案為.【考點】等差數(shù)列和等比數(shù)列【點睛】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運算問題轉化為解關于基本量的方程(組)問題,因此可以說數(shù)列中的絕大部分運算題可看作方程應用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.15、【解析】因為該組樣本數(shù)據(jù)的平均數(shù)為2017,所以,解得,則該組樣本數(shù)據(jù)的方差為.16、.【解析】
連接、,取的中點,連接,可知,且是以為腰的等腰三角形,然后利用銳角三角函數(shù)可求出的值作為所求的答案.【詳解】如下圖所示:連接、,取的中點,連接,在正方體中,,則四邊形為平行四邊形,所以,則異面直線和所成的角為或其補角,易知,由勾股定理可得,,為的中點,則,在中,,因此,異面直線和所成角的余弦值為,故答案為.【點睛】本題考查異面直線所成角的余弦值的計算,求解異面直線所成的角一般利用平移直線法求解,遵循“一作、二證、三計算”,在計算時,一般利用銳角三角函數(shù)的定義或余弦定理求解,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)().【解析】試題分析:(Ⅰ)運用兩角和的正弦公式對f(x)化簡整理,由周期公式求ω的值;(Ⅱ)根據(jù)函數(shù)y=sinx的單調遞增區(qū)間對應求解即可.試題解析:(Ⅰ)因為,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調遞增區(qū)間為().由,得.所以的單調遞增區(qū)間為().【考點】兩角和的正弦公式、周期公式、三角函數(shù)的單調性.【名師點睛】三角函數(shù)的單調性:1.三角函數(shù)單調區(qū)間的確定,一般先將函數(shù)式化為基本三角函數(shù)標準式,然后通過同解變形或利用數(shù)形結合方法求解.關于復合函數(shù)的單調性的求法;2.利用三角函數(shù)的單調性比較兩個同名三角函數(shù)值的大小,必須先看兩角是否同屬于這一函數(shù)的同一單調區(qū)間內,不屬于的,可先化至同一單調區(qū)間內.若不是同名三角函數(shù),則應考慮化為同名三角函數(shù)或用差值法(例如與0比較,與1比較等)求解.18、(x﹣4)2+(y+3)2=21,圓的半徑為【解析】
設出圓的一般方程,把代入所設,得到關于的方程組,求解,即可求得圓的一般方程,化為標準方程,進一步求得圓心坐標與半徑.【詳解】設圓的方程為:x2+y2+Dx+Ey+F=0,則,解得D=﹣4,E=3,F(xiàn)=0,∴圓的方程為x2+y2﹣8x+6y=0,化為(x﹣4)2+(y+3)2=21,可得:圓心是(4,﹣3)、半徑r=1.【點睛】本題主要考查圓的方程和性質,屬于簡單題.求圓的方程常見思路與方法有:①直接設出動點坐標,根據(jù)題意列出關于的方程即可;②根據(jù)幾何意義直接找到圓心坐標和半徑,寫出方程;③待定系數(shù)法,可以根據(jù)題意設出圓的標準方程或一般式方程,再根據(jù)所給條件求出參數(shù)即可.19、(1)2(2)【解析】
(1)在題干等式中利用邊化角思想,結合兩角和的正弦公式、內角和定理以及誘導公式計算出,再利用角化邊的思想可得出的比值;(2)由(1)中的結果,結合余弦定理求出和的值,再利用同角三角函數(shù)的平方關系求出,最后利用三角形的面積公式求出的面積.【詳解】(1)由正弦定理得,則,所以,即,化簡可得.又,所以.所以,即.(2)由(1)知.由余弦定理及,,得,.解得,因此因為,且所以因此.【點睛】在解三角形的問題時,要根據(jù)已知元素的類型合理選擇正弦定理與余弦定理解三角形,除此之外,在有邊和角的等式中,優(yōu)先邊化角,利用三角恒等變換思想化簡求解,能起到簡化計算的作用.20、(1)(2)3【解析】
(1)由,,根據(jù)三角形面積公式可知,,再根據(jù)角平分線的定義可知,到,的距離相等,所以,即可求出;(2)先根據(jù)(1)可得,,由平方關系得,再根據(jù)三角形的面積公式,可化簡得,然后根據(jù)基本不等式即可求出面積的最大值.【詳解】(1)如圖所示:因為,所以.又因為為的角平分線,所以到,的距離相等,所以所以.(2)由(1)及余弦定理得:所以,又因為所以,所以又因為且,故所以,當且僅當即時取等號.所以面積的最大值為.【點睛】本題主要考查正余弦定理在解三角形中的應用,三角形面積公式的應用,以及利用基本不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣州客運資格證報考條件
- 2024年拉薩辦理客運從業(yè)資格證2024年試題
- 2024年曲靖客運資格證題庫
- 2024年濟南客運從業(yè)資格證考試流程圖
- 燃氣采暖熱水爐成品檢驗作業(yè)指導書
- 企業(yè)診斷調研問卷-設備管理(改)-
- 研究員聘用合同樣本
- 能源項目招投標獎勵規(guī)定
- 林業(yè)局森林防火檔案管理準則
- 3D打印投資指南
- 2024-2025學年度第一學期期中學業(yè)質量監(jiān)測
- 河南省南陽市2023-2024學年高一上學期期中數(shù)學試題含答案
- 統(tǒng)編語文四年級上冊第六單元教材解讀及集體備課
- 2024年河南省軍隊文職(臨床醫(yī)學)高頻備考核心試題庫(含答案詳解)
- 鄉(xiāng)村振興課件教學課件
- 2023年國家公務員錄用考試《行測》副省級卷-解析
- 2024年銀行考試-招商銀行考試近5年真題附答案
- 人教版三年級上冊《生命-生態(tài)-安全》全冊教案(及計劃)
- 食品工藝學:食品的輻射保藏
- 2024年公開招聘大社區(qū)工作人員報名表
- 2024年上海市普通高中學業(yè)水平等級性考試(物理)附試卷分析
評論
0/150
提交評論