北京市第十二中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第1頁
北京市第十二中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第2頁
北京市第十二中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第3頁
北京市第十二中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第4頁
北京市第十二中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市第十二中學2025屆高一數(shù)學第二學期期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知扇形的弧長是8,其所在圓的直徑是4,則扇形的面積是()A.8 B.6 C.4 D.162.己知,,若軸上方的點滿足對任意,恒有成立,則點縱坐標的最小值為()A. B. C.1 D.23.若,,則與的夾角為()A. B. C. D.4.設(shè)變量,滿足約束條件,則目標函數(shù)的最大值為()A. B. C. D.5.數(shù)列只有5項,分別是3,5,7,9,11,的一個通項公式為()A. B. C. D.6.把函數(shù),圖象上所有的點向右平行移動個單位長度,橫坐標伸長到原來的2倍,所得圖象對應(yīng)的函數(shù)為()A. B.C. D.7.如圖,有一輛汽車在一條水平的公路上向正西行駛,汽車在點測得公路北側(cè)山頂?shù)难鼋菫?0°,汽車行駛后到達點測得山頂在北偏西30°方向上,且仰角為45°,則山的高度為()A. B. C. D.8.在三棱錐中,,,,平面平面,則三棱錐外接球的表面積為()A. B. C. D.9.若是一個圓的方程,則實數(shù)的取值范圍是()A. B.C. D.10.長方體,,,,則異面直線與所成角的余弦值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,則在方向上的投影為______.12.如圖,邊長為2的菱形的對角線相交于點,點在線段上運動,若,則的最小值為_______.13.在中,給出如下命題:①是所在平面內(nèi)一定點,且滿足,則是的垂心;②是所在平面內(nèi)一定點,動點滿足,,則動點一定過的重心;③是內(nèi)一定點,且,則;④若且,則為等邊三角形,其中正確的命題為_____(將所有正確命題的序號都填上)14.正項等比數(shù)列中,,,則公比__________.15.關(guān)于的方程只有一個實數(shù)根,則實數(shù)_____.16.已知滿足約束條件,則的最大值為__三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.己知向量,,設(shè)函數(shù),且的圖象過點和點.(1)當時,求函數(shù)的最大值和最小值及相應(yīng)的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.18.已知函數(shù).(1)求的值及f(x)的對稱軸;(2)將的圖象向左平移個單位得到函數(shù)的圖象,求的單調(diào)遞增區(qū)間.19.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.20.已知函數(shù),且函數(shù)是偶函數(shù),設(shè)(1)求的解析式;(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.21.已知.(1)求不等式的解集;(2)若關(guān)于的不等式能成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

直接利用扇形的面積公式求解.【詳解】扇形的弧長l=8,半徑r=2,由扇形的面積公式可知,該扇形的面積S=1故選A【點睛】本題主要考查扇形面積的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.2、D【解析】

由題意首先利用平面向量的坐標運算法則確定縱坐標的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點P縱坐標的最小值即可.【詳解】設(shè),則,,故,恒成立,即恒成立,據(jù)此可得:,故,當且僅當時等號成立.據(jù)此可得的最小值為,則的最小值為.即點縱坐標的最小值為2.故選D.【點睛】本題主要考查平面向量的坐標運算,二次函數(shù)最值的求解等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.3、A【解析】

根據(jù)平面向量夾角公式可求得,結(jié)合的范圍可求得結(jié)果.【詳解】設(shè)與的夾角為,又故選:【點睛】本題考查平面向量夾角的求解問題,關(guān)鍵是熟練掌握兩向量夾角公式,屬于基礎(chǔ)題.4、C【解析】

作出可行域,利用平移法即可求出.【詳解】作出不等式組表示的平面區(qū)域,如圖所示:當直線平移至經(jīng)過直線與直線的交點時,取得最大值,.故選:C.【點睛】本題主要考查簡單線性規(guī)劃問題的解法應(yīng)用,屬于基礎(chǔ)題.5、B【解析】

根據(jù)題意,得到數(shù)列為等差數(shù)列,通過首項和公差,得到通項.【詳解】因為數(shù)列只有5項,分別是3,5,7,9,11,所以是以為首項,為公差的等差數(shù)列,.故選:B.【點睛】本題考查求等差數(shù)列的通項,屬于簡單題.6、C【解析】

利用二倍角的余弦公式以及輔助角公式將函數(shù)化為的形式,然后再利用三角函數(shù)的圖像變換即可求解.【詳解】函數(shù),函數(shù)圖象上所有的點向右平行移動個單位長度可得,在將橫坐標伸長到原來的2倍,可得.故選:C【點睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的圖像平移伸縮變換,需熟記公式,屬于基礎(chǔ)題.7、D【解析】

通過題意可知:,設(shè)山的高度,分別在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【詳解】由題意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本題選D.【點睛】本題考查了余弦定理的應(yīng)用,弄清題目中各個角的含義是解題的關(guān)鍵.8、D【解析】

結(jié)合題意,結(jié)合直線與平面垂直的判定和性質(zhì),得到兩個直角三角形,取斜邊的一半,即為外接球的半徑,結(jié)合球表面積計算公式,計算,即可.【詳解】過P點作,結(jié)合平面ABC平面PAC可知,,故,結(jié)合可知,,所以,結(jié)合所以,所以,故該外接球的半徑等于,所以球的表面積為,故選D.【點睛】考查了平面與平面垂直的性質(zhì),考查了直線與平面垂直的判定和性質(zhì),難度偏難.9、C【解析】

根據(jù)即可求出結(jié)果.【詳解】據(jù)題意,得,所以.【點睛】本題考查圓的一般方程,屬于基礎(chǔ)題型.10、A【解析】

由題,找出,故(或其補角)為異面直線與所成角,然后解出答案即可.【詳解】如圖,連接,由,(或其補角)為異面直線與所成角,由已知可得,則..即異面直線與所成角的余弦值為.故選A.【點睛】本題考查了異面直線的夾角問題,找平行線,找出夾角是解題的關(guān)鍵,屬于較為基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由平面向量投影的定義可得出在方向上的投影為,從而可計算出結(jié)果.【詳解】設(shè)平面向量與的夾角為,則在方向上的投影為.故答案為:.【點睛】本題考查平面向量投影的計算,熟悉平面向量投影的定義是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.12、【解析】

以為原點建立平面直角坐標系,利用計算出兩點的坐標,設(shè)出點坐標,由此計算出的表達式,,進而求得最值.【詳解】以為原點建立平面直角坐標系如下圖所示,設(shè),則①,由得②,由①②解得,故.設(shè),則,當時取得最小值為.故填:.【點睛】本小題主要考查平面向量的坐標運算,考查向量數(shù)量積的坐標表示以及數(shù)量積求最值,考查二次函數(shù)的性質(zhì),考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.13、①②④.【解析】

①:運用已知的式子進行合理的變形,可以得到,進而得到,再次運用等式同樣可以得到,,這樣可以證明出是的垂心;②:運用平面向量的減法的運算法則、加法的幾何意義,結(jié)合平面向量共線定理,可以證明本命題是真命題;③:運用平面向量的加法的幾何意義以及平面向量共線定理,結(jié)合面積公式,可證明出本結(jié)論是錯誤的;④:運用平面向量的加法幾何意義和平面向量的數(shù)量積的定義,可以證明出本結(jié)論是正確的.【詳解】①:,同理可得:,,所以本命題是真命題;②:,設(shè)的中點為,所以有,因此動點一定過的重心,故本命題是真命題;③:由,可得設(shè)的中點為,,,故本命題是假命題;④:由可知角的平分線垂直于底邊,故是等腰三角形,由可知:,所以是等邊三角形,故本命題是真命題,因此正確的命題為①②④.【點睛】本題考查了平面向量的加法的幾何意義和平面向量數(shù)量積的運算,考查了數(shù)形結(jié)合思想.14、【解析】

根據(jù)題意,由等比數(shù)列的性質(zhì)可得,進而分析可得答案.【詳解】根據(jù)題意,等比數(shù)列中,,則,又由數(shù)列是正項的等比數(shù)列,所以.【點睛】本題主要考查了等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項公式,以及注意數(shù)列是正項等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、【解析】

首先從方程看是不能直接解出這個方程的根的,因此可以轉(zhuǎn)化成函數(shù),從函數(shù)的奇偶性出發(fā)?!驹斀狻吭O(shè),則∴為偶函數(shù),其圖象關(guān)于軸對稱,又依題意只有一個零點,故此零點只能是,所以,∴,∴,∴,∴,故答案為:【點睛】本題主要考查了函數(shù)奇偶性以及零點與方程的關(guān)系,方程的根就是對應(yīng)函數(shù)的零點,本題屬于基礎(chǔ)題。16、【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域,如圖所示,化目標函數(shù)為,由圖可得,當直線過時,直線在軸上的截距最大,所以有最大值為.故答案為1.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最大值為2,此時;最小值為-1,此時.(2)【解析】

(1)根據(jù)向量數(shù)量積坐標公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點,求解函數(shù)解析式,當時,解出的范圍,根據(jù)三角函數(shù)性質(zhì),可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點和,得到,解得,.當時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得令,,如圖當時,在有兩個不同的解∴,即.【點睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計算能力,考查轉(zhuǎn)化與化歸思想,考查數(shù)形結(jié)合思想,屬于中等題型.18、(1),;(2)?!窘馕觥?/p>

(1)求得函數(shù),代入即可求解的值,令,即可求得函數(shù)的對稱軸的方程;(2)由(1),結(jié)合三角函數(shù)的圖象變換,求得,再根據(jù)三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由函數(shù),則,令,解得,即函數(shù)的對稱軸的方程為(2)由(1)可知函數(shù)的圖象向左平移個單位得到函數(shù)的圖象,可得的圖象,令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為.【點睛】本題主要考查了三函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換的應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換求得函數(shù)的解析式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(1);(2).【解析】

(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質(zhì)可求出c.【詳解】(1),,,故數(shù)列是以1為首項,4為公差的等差數(shù)列..(2)由(1)知,,,,,,法1:,,成等比數(shù)列,,即,整理得:,或.①當時,,所以(定值),滿足為等差數(shù)列,②當時,,,,,不滿足,故此時數(shù)列不為等差數(shù)列(舍去).法2:因為為等差數(shù)列,所以,即,解得或.①當時,滿足,,成等比數(shù)列,②當時,,,,不滿足,,成等比數(shù)列(舍去),綜上可得.【點睛】本題考查等差數(shù)列的通項及求和,等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,解決此類問題通常借助方程思想列方程(組)求解,屬于中等題.20、(1);(2);(3).【解析】

(1)對稱軸為,對稱軸為,再根據(jù)圖像平移關(guān)系求解;(2)分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;(3)令為整體,轉(zhuǎn)化為二次函數(shù)根的分布問題求解.【詳解】(1)函數(shù)的對稱軸為,因為向左平移1個單位得到,且是偶函數(shù),所以,所以.(2)即又,所以,則因為,所以實數(shù)的取值范圍是.(3)方程即化簡得令,則若方程有三個不同的實數(shù)根,則方程必須有兩個不相等的實數(shù)根,且或,令當時,則,即,當時,,,,舍去,綜上,實數(shù)的取值范圍是.【點睛】本題考查求函數(shù)解析式,函數(shù)不等式恒成立及函數(shù)零點問題.函數(shù)不等式恒成立通常采用參數(shù)分離法;函數(shù)零點問題要結(jié)合函數(shù)與方程的關(guān)系求解.21、(1)(1)或.【解析】

(1)運用絕對值的意義,去絕對值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等價為|x+l|﹣|x﹣m|的最大值,由絕對值不等式的性質(zhì),以及絕對值不等式的解法,可得所求范圍.【詳解】解:(1)由題意可得|x﹣1|+|1x+3|>4,當x≥1時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論