![2022年浙江省“七彩陽光”高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M07/17/14/wKhkGWZ3ZIeAEfaVAAGEglUIlJw248.jpg)
![2022年浙江省“七彩陽光”高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M07/17/14/wKhkGWZ3ZIeAEfaVAAGEglUIlJw2482.jpg)
![2022年浙江省“七彩陽光”高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M07/17/14/wKhkGWZ3ZIeAEfaVAAGEglUIlJw2483.jpg)
![2022年浙江省“七彩陽光”高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M07/17/14/wKhkGWZ3ZIeAEfaVAAGEglUIlJw2484.jpg)
![2022年浙江省“七彩陽光”高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M07/17/14/wKhkGWZ3ZIeAEfaVAAGEglUIlJw2485.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個(gè)極值點(diǎn),滿足,則下列區(qū)間中存在極值點(diǎn)的是()A. B. C. D.2.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.23.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.294.己知集合,,則()A. B. C. D.5.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.6.已知,則的大小關(guān)系為()A. B. C. D.7.已知向量,,若,則()A. B. C.-8 D.88.已知中,,則()A.1 B. C. D.9.已知,且,則在方向上的投影為()A. B. C. D.10.設(shè)集合,,若,則()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.12.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)是_____,_____.14.二項(xiàng)式的展開式中項(xiàng)的系數(shù)為_____.15.在中,為定長,,若的面積的最大值為,則邊的長為____________.16.設(shè)集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點(diǎn),直線與圓相交于、兩點(diǎn),求的值.18.(12分)2019年入冬時(shí)節(jié),長春市民為了迎接2022年北京冬奧會,增強(qiáng)身體素質(zhì),積極開展冰上體育鍛煉.現(xiàn)從速滑項(xiàng)目中隨機(jī)選出100名參與者,并由專業(yè)的評估機(jī)構(gòu)對他們的鍛煉成果進(jìn)行評估打分(滿分為100分)并且認(rèn)為評分不低于80分的參與者擅長冰上運(yùn)動(dòng),得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運(yùn)動(dòng)進(jìn)行統(tǒng)計(jì),請將下列列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率在不超過0.01的前提下認(rèn)為擅長冰上運(yùn)動(dòng)與性別有關(guān)系?擅長不擅長合計(jì)男性30女性50合計(jì)1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)19.(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,是棱的中點(diǎn).(1)求證:平面;(2)若,點(diǎn)是線段上一點(diǎn),且,求直線與平面所成角的正弦值.21.(12分)某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每一位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示.組別頻數(shù)(1)已知此次問卷調(diào)查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),請利用正態(tài)分布的知識求;(2)在(1)的條件下,環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案.(?。┑梅植坏陀诘目梢垣@贈(zèng)次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)次隨機(jī)話費(fèi);(ⅱ)每次贈(zèng)送的隨機(jī)話費(fèi)和相應(yīng)的概率如下表.贈(zèng)送的隨機(jī)話費(fèi)/元概率現(xiàn)市民甲要參加此次問卷調(diào)查,記為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.附:,若,則,,.22.(10分)已知函數(shù),.(1)若對于任意實(shí)數(shù),恒成立,求實(shí)數(shù)的范圍;(2)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個(gè)極值點(diǎn),滿足,即,,,且,,,,,,當(dāng)時(shí),為函數(shù)的一個(gè)極小值點(diǎn),而.故選:.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用.2、B【解析】
對復(fù)數(shù)進(jìn)行化簡計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡單題.3、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.4、C【解析】
先化簡,再求.【詳解】因?yàn)?,又因?yàn)椋?,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號與零點(diǎn)情況,本題屬于基礎(chǔ)題.6、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..7、B【解析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長的運(yùn)算,屬于基礎(chǔ)題.8、C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.【點(diǎn)睛】本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.9、C【解析】
由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.10、A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.11、B【解析】
列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.12、C【解析】
根據(jù)等比數(shù)列的前項(xiàng)和公式,判斷出正確選項(xiàng).【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接利用復(fù)數(shù)的乘法運(yùn)算化簡,從而得到復(fù)數(shù)的共軛復(fù)數(shù)和的模.【詳解】,則復(fù)數(shù)的共軛復(fù)數(shù)為,且.故答案為:;.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.14、15【解析】
由題得,,令,解得,代入可得展開式中含x6項(xiàng)的系數(shù).【詳解】由題得,,令,解得,所以二項(xiàng)式的展開式中項(xiàng)的系數(shù)為.故答案為:15【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,考查了利用通項(xiàng)公式去求展開式中某項(xiàng)的系數(shù)問題.15、【解析】
設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進(jìn)一步求出的值即為所求.【詳解】解:設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,建系是關(guān)鍵,屬于難題.16、【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因?yàn)?解得,即,則,故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查解一元二次不等式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1):,:;(2)【解析】
(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標(biāo)方程.(2)求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入圓的直角坐標(biāo)方程,化簡后寫出韋達(dá)定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標(biāo)方程為;(2)經(jīng)檢驗(yàn)點(diǎn)在直線上,可轉(zhuǎn)化為①,將①式代入圓的直角坐標(biāo)方程為得,化簡得,設(shè)是方程的兩根,則,,∵,∴與同號,由的幾何意義得.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用直線參數(shù)的幾何意義求解距離問題,屬于中檔題.18、(1)(2)填表見解析;不能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為擅長冰上運(yùn)動(dòng)與性別有關(guān)系【解析】
(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷不能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為擅長冰上運(yùn)動(dòng)與性別有關(guān)系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運(yùn)動(dòng)的人數(shù)為.完善列聯(lián)表如下:擅長不擅長合計(jì)男性203050女性104050合計(jì)3070100,對照表格可知,,不能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為擅長冰上運(yùn)動(dòng)與性別有關(guān)系.【點(diǎn)睛】本小題主要考查根據(jù)頻率分布直方圖計(jì)算小長方形的高,考查列聯(lián)表獨(dú)立性檢驗(yàn),屬于基礎(chǔ)題.19、(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據(jù)公式計(jì)算卡方值,再對應(yīng)卡值表判斷..(2)根據(jù)題意,隨機(jī)變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據(jù)期望公式求值.(3)因?yàn)橹辽?個(gè)的偶數(shù)個(gè)十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個(gè)路口中有個(gè)路口種植楊樹,下面分類討論①當(dāng)時(shí),由論證.②當(dāng)時(shí),由論證.③當(dāng)時(shí),,設(shè),再論證當(dāng)時(shí),取得最小值即可.【詳解】(1)本次實(shí)驗(yàn)中,,故沒有99.9%的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因?yàn)?,所?設(shè)個(gè)路口中有個(gè)路口種植楊樹,①當(dāng)時(shí),,因?yàn)椋?,于?②當(dāng)時(shí),,同上可得③當(dāng)時(shí),,設(shè),當(dāng)時(shí),,顯然,當(dāng)即時(shí),,當(dāng)即時(shí),,即;,因此,即.綜上,,即.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的分布列以及期望、排列組合,還考查運(yùn)算求解能力以及必然與或然思想,屬于難題.20、(1)證明見解析;(2)【解析】
(1)的中點(diǎn),連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點(diǎn)建立空間坐標(biāo)系,求出平面的法向量,計(jì)算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點(diǎn),連接,,,分別是,的中點(diǎn),,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點(diǎn),以,,為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,0,,,2,,是的中點(diǎn),是的三等分點(diǎn),,1,,,,,,,,,0,,,2,,設(shè)平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計(jì)算,屬于中檔題.21、(1);(2)見解析.【解析】
(1)根據(jù)題中所給的統(tǒng)計(jì)表,利用公式計(jì)算出平均數(shù)的值,再利用數(shù)據(jù)之間的關(guān)系將、表示為,,利用題中所給數(shù)據(jù),以及正態(tài)分布的概率密度曲線的對稱性,求出對應(yīng)的概率;(2)根據(jù)題意,高于平均數(shù)和低于平均數(shù)的概率各為,再結(jié)合得元、元的概率,分析得出話費(fèi)的可能數(shù)據(jù)都有哪些,再利用公式求得對應(yīng)的概率,進(jìn)而得出分布列,之后利用離散型隨機(jī)變量的分布列求出其數(shù)學(xué)期望.【詳解】(1)由題意可得,易知,,,;(2)根據(jù)題意,可得出隨機(jī)變量的可能取值有、、、元,,,,.所以,隨機(jī)變量的分布列如下表所示:所以,隨機(jī)變量的數(shù)學(xué)期望為.【點(diǎn)睛】本題考查概率的計(jì)算,涉及到平均數(shù)的求法、正態(tài)分布概率的計(jì)算以及離散型隨機(jī)變量分布列及其數(shù)學(xué)期望,在解題時(shí)要弄清楚隨機(jī)變量所滿足的分布列類型,結(jié)合相應(yīng)公式計(jì)算對應(yīng)事件的概率,考查計(jì)算能力,屬于中等題.22、(1);(2)不存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直.【解析】
(1)分類時(shí),恒成立,時(shí),分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湘教版地理七年級上冊《第三節(jié) 影響氣候的主要因素》聽課評課記錄2
- 蘇科版數(shù)學(xué)七年級上冊《有理數(shù)的減法法則》聽評課記錄2
- 現(xiàn)場管理承包協(xié)議書
- 生活指南版權(quán)使用合同(2篇)
- 魯人版道德與法治九年級上冊2.2 做大蛋糕 分好蛋糕 聽課評課記錄
- 聽評課一年級記錄怎么寫
- 吉林省八年級數(shù)學(xué)下冊17函數(shù)及其圖象17.4反比例函數(shù)17.4.1反比例函數(shù)聽評課記錄新版華東師大版
- 蘇科版九年級數(shù)學(xué)聽評課記錄:第52講 用待定系數(shù)法求二次函數(shù)的解析式
- 五年級數(shù)學(xué)上冊聽評課記錄
- 滬科版數(shù)學(xué)七年級下冊10.2《平行線的判定》聽評課記錄3
- 小學(xué)六年級數(shù)學(xué)上冊《簡便計(jì)算》練習(xí)題(310題-附答案)
- 2024年河南省《輔警招聘考試必刷500題》考試題庫及答案【全優(yōu)】
- -情景交際-中考英語復(fù)習(xí)考點(diǎn)
- 安全隱患報(bào)告和舉報(bào)獎(jiǎng)勵(lì)制度
- 地理標(biāo)志培訓(xùn)課件
- 2023行政主管年終工作報(bào)告五篇
- 2024年中國養(yǎng)老產(chǎn)業(yè)商學(xué)研究報(bào)告-銀發(fā)經(jīng)濟(jì)專題
- 公園衛(wèi)生保潔考核表
- 培訓(xùn)如何上好一堂課
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)下冊教案全冊
- 2024醫(yī)療銷售年度計(jì)劃
評論
0/150
提交評論