2023屆甘肅省金昌市永昌縣四中數學高三第一學期期末預測試題含解析_第1頁
2023屆甘肅省金昌市永昌縣四中數學高三第一學期期末預測試題含解析_第2頁
2023屆甘肅省金昌市永昌縣四中數學高三第一學期期末預測試題含解析_第3頁
2023屆甘肅省金昌市永昌縣四中數學高三第一學期期末預測試題含解析_第4頁
2023屆甘肅省金昌市永昌縣四中數學高三第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果直線與圓相交,則點與圓C的位置關系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內 D.上述三種情況都有可能2.“角谷猜想”的內容是:對于任意一個大于1的整數,如果為偶數就除以2,如果是奇數,就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.93.已知復數為虛數單位),則z的虛部為()A.2 B. C.4 D.4.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或5.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數為()A.1 B.2 C.3 D.46.若復數(為虛數單位),則的共軛復數的模為()A. B.4 C.2 D.7.設為自然對數的底數,函數,若,則()A. B. C. D.8.設集合,,則()A. B.C. D.9.設等比數列的前項和為,若,則的值為()A. B. C. D.10.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.311.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.12.已知實數,則的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知角的終邊過點,則______.14.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預防教育數字化網絡平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數分別是,則這五位同學答對題數的方差是____________.15.在的二項展開式中,所有項的二項式系數之和為256,則_______,項的系數等于________.16.已知函數在上單調遞增,則實數a值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)討論的單調性;(2)若存在兩個極值點,,證明:.18.(12分)已知函數是減函數.(1)試確定a的值;(2)已知數列,求證:.19.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.20.(12分)在平面直角坐標系中,直線的參數方程為(為參數,).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.21.(12分)已知函數.(1)當時,解不等式;(2)設不等式的解集為,若,求實數的取值范圍.22.(10分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質,考查點到直線距離公式的應用,屬于中檔題.2、B【解析】

模擬程序運行,觀察變量值可得結論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結構,解題時可模擬程序運行,觀察變量值,從而得出結論.3、A【解析】

對復數進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數的四則運算及虛部的概念,計算過程要注意.4、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.5、A【解析】

先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數,當時,,當即時,取等號,當時,函數沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.6、D【解析】

由復數的綜合運算求出,再寫出其共軛復數,然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復數的運算,考查共軛復數與模的定義,屬于基礎題.7、D【解析】

利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.8、D【解析】

利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.9、C【解析】

求得等比數列的公比,然后利用等比數列的求和公式可求得的值.【詳解】設等比數列的公比為,,,,因此,.故選:C.【點睛】本題考查等比數列求和公式的應用,解答的關鍵就是求出等比數列的公比,考查計算能力,屬于基礎題.10、D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.11、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).12、B【解析】

根據,利用指數函數對數函數的單調性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數函數對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.14、2【解析】

由這五位同學答對的題數分別是,得該組數據的平均數,則方差.15、81【解析】

根據二項式系數和的性質可得n,再利用展開式的通項公式求含項的系數即可.【詳解】由于所有項的二項式系數之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數的性質,二項式展開式的通項公式,屬于中檔題.16、【解析】

由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.【點睛】本題考查函數的單調性,解題關鍵是問題轉化為恒成立,利用換元法和二次函數的性質易求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)求得的導函數,對分成兩種情況,討論的單調性.(2)由(1)判斷出的取值范圍,根據韋達定理求得的關系式,利用差比較法,計算,通過構造函數,利用導數證得,由此證得,進而證得不等式成立.【詳解】(1).當時,,此時在上單調遞減;當時,由解得或,∵是增函數,∴此時在和單調遞減,在單調遞增.(2)由(1)知.,,,不妨設,∴,,令,∴,∴在上是減函數,,∴,即.【點睛】本小題主要考查利用導數研究函數的單調區(qū)間,考查利用導數證明不等式,考查分類討論的數學思想方法,考查化歸與轉化的數學思想方法,屬于中檔題.18、(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導得,由是減函數得,對任意的,都有恒成立,構造函數,通過求導判斷它的單調性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數,且可得,當時,,則,即,兩邊同除以得,,即,從而,兩邊取對數,然后再證明恒成立即可,構造函數,,通過求導證明即可.【詳解】解:(Ⅰ)的定義域為,.由是減函數得,對任意的,都有恒成立.設.∵,由知,∴當時,;當時,,∴在上單調遞增,在上單調遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數,且可得,當時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調遞增,∴在上單調遞減,而,∴當時,恒成立,∴在上單調遞減,即時,,∴當時,.∵,∴當時,,即②.綜上①②可得,.【點睛】本題考查了導數與函數的單調性的關系,考查了函數的最值,考查了構造函數的能力,考查了邏輯推理能力與計算求解能力,屬于難題.,19、(1);(2)【解析】

(1)根據正弦定理化簡得到,故,得到答案.(2)計算,再利用面積公式計算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當時等號成立.,故,,故△ABC面積的最大值為.【點睛】本題考查了正弦定理,面積公式,均值不等式,意在考查學生的綜合應用能力.20、(1)(2)【解析】

(1)利用消參法以及點求解出的普通方程,根據極坐標與直角坐標的轉化求解出直線的極坐標方程;(2)將的坐標設為,利用點到直線的距離公式結合三角函數的有界性,求解出取最小值時對應的值.【詳解】(1)消去參數得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當,時取得最小值即,∴【點睛】本題考查直線的參數方程、普通方程、極坐標方程的互化以及根據曲線上一點到直線距離的最值求參數,難度一般.(1)直角坐標和極坐標的互化公式:;(2)求解曲線上一點到直線的距離的最值,可優(yōu)先考慮將點的坐標設為參數方程的形式,然后再去求解.21、(1)或;(2)【解析】

(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結果.(2)利用等價轉化的思想,可得不等式在恒成立,然后解出解集,根據集合間的包含關系,可得結果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論