2025屆重慶市部分區(qū)縣高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
2025屆重慶市部分區(qū)縣高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
2025屆重慶市部分區(qū)縣高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
2025屆重慶市部分區(qū)縣高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
2025屆重慶市部分區(qū)縣高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆重慶市部分區(qū)縣高一下數(shù)學(xué)期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點在角的終邊上,函數(shù)圖象上與軸最近的兩個對稱中心間的距離為,則的值為()A. B. C. D.2.設(shè),為兩個平面,則能斷定∥的條件是()A.內(nèi)有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面3.已知等比數(shù)列{an}中,a3?a13=20,a6=4,則a10的值是()A.16 B.14 C.6 D.54.在直三棱柱中,底面為直角三角形,,,是上一動點,則的最小值是()A. B. C. D.5.若,則下列不等式中不正確的是().A. B. C. D.6.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,b=c,且滿足=,若點O是△ABC外一點,∠AOB=θ(0<θ<π),OA=2OB=2,則平面四邊形OACB面積的最大值是()A. B. C.3 D.7.如圖,為正方體,下面結(jié)論錯誤的是()A.平面B.C.平面D.異面直線與所成的角為8.l:與兩坐標軸所圍成的三角形的面積為A.6 B.1 C. D.39.已知隨機事件和互斥,且,.則()A. B. C. D.10.已知等差數(shù)列的公差為2,前項和為,且,則的值為A.11 B.12 C.13 D.14二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標系中,點到直線的距離為______.12.函數(shù)的最小正周期為________.13.?dāng)?shù)列的前項和為,若對任意,都有,則數(shù)列的前項和為________14.已知,且是第一象限角,則的值為__________.15.定義為數(shù)列的均值,已知數(shù)列的均值,記數(shù)列的前項和是,若對于任意的正整數(shù)恒成立,則實數(shù)k的取值范圍是________.16.已知圓上有兩個點到直線的距離為3,則半徑的取值范圍是________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知矩形中,,,M是以為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面.(1)求證:平面平面;(2)當(dāng)四棱錐的體積最大時,求與所成的角18.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.19.某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進行視力調(diào)查.(I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目.(II)若從抽取的6所學(xué)校中隨機抽取2所學(xué)校做進一步數(shù)據(jù)分析,(1)列出所有可能的抽取結(jié)果;(2)求抽取的2所學(xué)校均為小學(xué)的概率.20.如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.21.在平面直角坐標系中,點,點P在x軸上(1)若,求點P的坐標:(2)若的面積為10,求點P的坐標.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意,則,即,則;又由三角函數(shù)的定義可得,則,應(yīng)選答案C.2、C【解析】

對四個選項逐個分析,可得出答案.【詳解】對于選項A,當(dāng),相交于直線時,內(nèi)有無數(shù)條直線與平行,即A錯誤;對于選項B,當(dāng),相交于直線時,存在直線滿足:既與平行又不在兩平面內(nèi),該直線平行于,,故B錯誤;對于選項C,設(shè)直線AB垂直于,平面,垂足分別為A,B,假設(shè)與不平行,設(shè)其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設(shè)不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學(xué)生的空間想象能力,屬于中檔題.3、D【解析】

用等比數(shù)列的性質(zhì)求解.【詳解】∵是等比數(shù)列,∴,∴.故選D.【點睛】本題考查等比數(shù)列的性質(zhì),靈活運用等比數(shù)列的性質(zhì)可以很快速地求解等比數(shù)列的問題.在等比數(shù)列中,正整數(shù)滿足,則,特別地若,則.4、B【解析】

連,沿將展開與在同一個平面內(nèi),不難看出的最小值是的連線,由余弦定理即可求解.【詳解】解:連,沿將展開與在同一個平面內(nèi),如圖所示,

連,則的長度就是所求的最小值.

,可得

又,

,

在中,由余弦定理可求得,故選B.【點睛】本題考查棱柱的結(jié)構(gòu)特征,余弦定理的應(yīng)用,是中檔題.5、D【解析】

先判斷出的大小關(guān)系,然后根據(jù)不等式的性質(zhì)以及基本不等式逐項判斷.【詳解】由,得,,,故D不正確,C正確;,,,故A正確;,,,取等號時,故B正確,故選D.【點睛】本題考查利用不等式性質(zhì)以及基本不等式判斷不等式是否成立,難度一般.注意使用基本不等式計算最值時,取等號的條件一定要記得添加.6、A【解析】

根據(jù)正弦和角公式化簡得是正三角形,再將平面四邊形OACB面積表示成的三角函數(shù),利用三角函數(shù)求得最值.【詳解】由已知得:即所以即又因為所以所以又因為所以是等邊三角形.所以在中,由余弦定理得且因為平面四邊形OACB面積為當(dāng)時,有最大值,此時平面四邊形OACB面積有最大值,故選A.【點睛】本題關(guān)鍵在于把所求面積表示成角的三角函數(shù),屬于難度題.7、D【解析】

在正方體中與

平行,因此有與平面

平行,A正確;在平面

內(nèi)的射影垂直于,因此有,B正確;與B同理有與

垂直,從而

平面

,C正確;由知與所成角為45°,D錯.故選D.8、D【解析】

先求出直線與坐標軸的交點,再求三角形的面積得解.【詳解】當(dāng)x=0時,y=2,當(dāng)y=0時,x=3,所以三角形的面積為.故選:D【點睛】本題主要考查直線與坐標軸的交點的坐標的求法,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.9、D【解析】

根據(jù)互斥事件的概率公式可求得,利用對立事件概率公式求得結(jié)果.【詳解】與互斥本題正確選項:【點睛】本題考查概率中的互斥事件、對立事件概率公式的應(yīng)用,屬于基礎(chǔ)題.10、C【解析】

利用等差數(shù)列通項公式及前n項和公式,即可得到結(jié)果.【詳解】∵等差數(shù)列的公差為2,且,∴∴∴.故選:C【點睛】本題考查了等差數(shù)列的通項公式及前n項和公式,考查計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

利用點到直線的距離公式即可得到答案?!驹斀狻坑牲c到直線的距離公式可知點到直線的距離故答案為2【點睛】本題主要考查點到直線的距離,熟練掌握公式是解題的關(guān)鍵,屬于基礎(chǔ)題。12、.【解析】

根據(jù)正切型函數(shù)的周期公式可計算出函數(shù)的最小正周期.【詳解】由正切型函數(shù)的周期公式得,因此,函數(shù)的最小正周期為,故答案為.【點睛】本題考查正切型函數(shù)周期的求解,解題的關(guān)鍵在于正切型函數(shù)周期公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.13、【解析】

根據(jù)數(shù)列的遞推公式,求得,再結(jié)合等差等比數(shù)列的前項和公式,即可求解,得到答案.【詳解】由題意,數(shù)列滿足,…①,…②由①-②,可得,即當(dāng)時,,所以,則數(shù)列的前項和為.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,以及等差、等比數(shù)列的前項和的應(yīng)用,其中解答中熟練應(yīng)用熟練的遞推公式得到數(shù)列的通項公式,再結(jié)合等差、等比數(shù)列的前項和公式的準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.14、;【解析】

利用兩角和的公式把題設(shè)展開后求得的值,進而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關(guān)系求得的值,最后利用誘導(dǎo)公式和對原式進行化簡,把的值和題設(shè)條件代入求解即可.【詳解】,,即,,兩邊同時平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【點睛】本題考查了兩角差的余弦公式、誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系,需熟記三角函數(shù)中的公式,屬于中檔題.15、【解析】

因為,,從而求出,可得數(shù)列為等差數(shù)列,記數(shù)列為,從而將對任意的恒成立化為,,即可求得答案.【詳解】,,故,,則,對也成立,,則,數(shù)列為等差數(shù)列,記數(shù)列為.故對任意的恒成立,可化為:,;即,解得,,故答案為:.【點睛】本題考查了根據(jù)遞推公式求數(shù)列通項公式和數(shù)列的單調(diào)性,掌握判斷數(shù)列前項和最大值的方法是解題關(guān)鍵,考查了分析能力和計算能力,屬于中檔題.16、【解析】

由圓上有兩個點到直線的距離為3,先求出圓心到直線的距離,得到不等關(guān)系式,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,又因為圓上有兩個點到直線的距離為3,則,解得,即圓的半徑的取值范圍是.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中合理應(yīng)用圓心到直線的距離,結(jié)合圖象得到半徑的不等關(guān)系式是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)證明,得到平面,得到答案.(2)過點M作于點E,當(dāng)M為半圓弧的中點時,四棱錐的體積最大,作于F,連接,與所成的角即與所成的角,計算得到答案.【詳解】(1)為直徑,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)過點M作于點E,∵平面平面,平面,即為四棱錐的高,又底面面積為定值.所以當(dāng)M為半圓弧的中點時,四棱錐的體積最大.作于F,連接,,與所成的角即與所成的角.在直角中,,,所以.,故與所成的角為.【點睛】本題考查了面面垂直,體積的最值,異面直線夾角,意在考查學(xué)生的空間想象能力和計算能力.18、(Ⅰ)(Ⅱ)【解析】

(1)本題是一個古典概型,可知基本事件共12個,方程當(dāng)時有實根的充要條件為,滿足條件的事件中包含9個基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個幾何概型,試驗的全部約束所構(gòu)成的區(qū)域為,.構(gòu)成事件的區(qū)域為,,.根據(jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實數(shù)根”.當(dāng)時,方程有實數(shù)根的充要條件為.(Ⅰ)基本事件共12個:.其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.事件中包含9個基本事件,事件發(fā)生的概率為.(Ⅱ)實驗的全部結(jié)果所構(gòu)成的區(qū)域為.構(gòu)成事件的區(qū)域為,所求的概率為【點睛】本題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,屬于基礎(chǔ)題.19、(1)3,2,1(2)【解析】(1)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目為3、2、1.(2)①在抽取到的6所學(xué)校中,3所小學(xué)分別記為A1,A2,A3,2所中學(xué)分別記為A4,A5,大學(xué)記為A6,則抽取2所學(xué)校的所有可能結(jié)果為{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15種.②從6所學(xué)校中抽取的2所學(xué)校均為小學(xué)(記為事件B)的所有可能結(jié)果為{A1,A2},{A1,A3},{A2,A3},共3種.所以P(B)=315=120、(1)見證明;(2)【解析】

(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論