湖南省衡陽縣2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第1頁
湖南省衡陽縣2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第2頁
湖南省衡陽縣2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第3頁
湖南省衡陽縣2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第4頁
湖南省衡陽縣2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖南省衡陽縣2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.取一根長度為的繩子,拉直后在任意位置剪斷,則剪得兩段繩有一段長度不小于的概率是()A. B. C. D.2.在中,,BC邊上的高等于,則A. B. C. D.3.函數(shù)的最小正周期為,則圖象的一條對(duì)稱軸方程是()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,輸出的s值為A. B.C. D.5.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象()A.向右平移 B.向右平移C.向左平移 D.向左平移6.在正方體中,直線與直線所成角是()A. B. C. D.7.設(shè)滿足約束條件,則的最小值為()A.3 B.4 C.5 D.108.已知內(nèi)角,,所對(duì)的邊分別為,,且滿足,則=()A. B. C. D.9.?dāng)?shù)列1,,,…,的前n項(xiàng)和為A. B. C. D.10.已知平面平面,直線平面,直線平面,,在下列說法中,①若,則;②若,則;③若,則.正確結(jié)論的序號(hào)為()A.①②③ B.①② C.①③ D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若,則實(shí)數(shù)___________.12.函數(shù)的最小正周期為___________.13.已知數(shù)列中,,,,則的值為_____.14.已知函數(shù)的最小正周期為,若將該函數(shù)的圖像向左平移個(gè)單位后,所得圖像關(guān)于原點(diǎn)對(duì)稱,則的最小值為________.15.若扇形的周長是,圓心角是度,則扇形的面積(單位)是__________.16.已知函數(shù),對(duì)于上的任意,,有如下條件:①;②;③;④.其中能使恒成立的條件序號(hào)是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在△ABC中,中線長AM=2.(1)若=-2,求證:++=0;(2)若P為中線AM上的一個(gè)動(dòng)點(diǎn),求·(+)的最小值.18.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對(duì)的邊分別為,,,若,且為鈍角,,求面積的最大值.19.如圖所示,是邊長為的正三角形,點(diǎn)四等分線段.(Ⅰ)求的值;(Ⅱ)若點(diǎn)是線段上一點(diǎn),且,求實(shí)數(shù)的值.20.在數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和.21.(1)任意向軸上這一區(qū)間內(nèi)投擲一個(gè)點(diǎn),則該點(diǎn)落在區(qū)間內(nèi)的概率是多少?(2)已知向量,,若,分別表示一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

設(shè)其中一段的長度為,可得出另一段長度為,根據(jù)題意得出的取值范圍,再利用幾何概型的概率公式可得出所求事件的概率.【詳解】設(shè)其中一段的長度為,可得出另一段長度為,由于剪得兩段繩有一段長度不小于,則或,可得或.由于,所以,或.由幾何概型的概率公式可知,事件“剪得兩段繩有一段長度不小于”的概率為,故選:A.【點(diǎn)睛】本題考查長度型幾何概型概率公式的應(yīng)用,解題時(shí)要將問題轉(zhuǎn)化為區(qū)間型的幾何概型來計(jì)算概率,考查分析問題以及運(yùn)算求解能力,屬于中等題.2、D【解析】試題分析:設(shè)邊上的高線為,則,所以.由正弦定理,知,即,解得,故選D.【考點(diǎn)】正弦定理【方法點(diǎn)撥】在平面幾何圖形中求相關(guān)的幾何量時(shí),需尋找各個(gè)三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個(gè)三角形,然后選用正弦定理與余弦定理求解.3、D【解析】

先根據(jù)函數(shù)的周期求出的值,求出函數(shù)的對(duì)稱軸方程,然后利用賦值法可得出函數(shù)圖象的一條對(duì)稱軸方程.【詳解】由于函數(shù)的最小正周期為,則,,令,解得.當(dāng)時(shí),函數(shù)圖象的一條對(duì)稱軸方程為.故選:D.【點(diǎn)睛】本題考查利用正弦型函數(shù)的周期求參數(shù),同時(shí)也考查了正弦型函數(shù)圖象對(duì)稱軸方程的計(jì)算,解題時(shí)要結(jié)合正弦函數(shù)的基本性質(zhì)來進(jìn)行求解,考查運(yùn)算求解能力,屬于中等題.4、B【解析】分析:初始化數(shù)值,執(zhí)行循環(huán)結(jié)構(gòu),判斷條件是否成立,詳解:初始化數(shù)值循環(huán)結(jié)果執(zhí)行如下:第一次:不成立;第二次:成立,循環(huán)結(jié)束,輸出,故選B.點(diǎn)睛:此題考查循環(huán)結(jié)構(gòu)型程序框圖,解決此類問題的關(guān)鍵在于:第一,要確定是利用當(dāng)型還是直到型循環(huán)結(jié)構(gòu);第二,要準(zhǔn)確表示累計(jì)變量;第三,要注意從哪一步開始循環(huán),弄清進(jìn)入或終止的循環(huán)條件、循環(huán)次數(shù).5、A【解析】

利用函數(shù)的圖像可得,從而可求出,再利用特殊點(diǎn)求出,進(jìn)而求出三角函數(shù)的解析式,再利用三角函數(shù)圖像的變換即可求解.【詳解】由圖可知,所以,當(dāng)時(shí),,由于,解得:,所以,要得到的圖像,則需要將的圖像向右平移.故選:A【點(diǎn)睛】本題考查了由圖像求解析式以及三角函數(shù)的圖像變換,需掌握三角函數(shù)圖像變換的原則,屬于基礎(chǔ)題.6、B【解析】

直線與直線所成角為,為等邊三角形,得到答案.【詳解】如圖所示:連接易知:直線與直線所成角為為等邊三角形,夾角為故答案選B【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力.7、B【解析】

結(jié)合題意畫出可行域,然后運(yùn)用線性規(guī)劃知識(shí)來求解【詳解】如圖由題意得到可行域,改寫目標(biāo)函數(shù)得,當(dāng)取到點(diǎn)時(shí)得到最小值,即故選【點(diǎn)睛】本題考查了運(yùn)用線性規(guī)劃求解最值問題,一般步驟:畫出可行域,改寫目標(biāo)函數(shù),求出最值,需要掌握解題方法8、A【解析】

利用正弦定理以及和與差的正弦公式可得答案;【詳解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根據(jù)正弦定理:可得sinA?tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴?tanA=1;∴tanA,那么A;故選A.【點(diǎn)睛】本題考查三角形的正弦定理,,內(nèi)角和定理以及和與差正弦公式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.9、B【解析】

數(shù)列為,則所以前n項(xiàng)和為.故選B10、D【解析】

由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯(cuò)誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【點(diǎn)睛】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由垂直關(guān)系可得數(shù)量積等于零,根據(jù)數(shù)量積坐標(biāo)運(yùn)算構(gòu)造方程求得結(jié)果.【詳解】,解得:故答案為:【點(diǎn)睛】本題考查根據(jù)向量垂直關(guān)系求解參數(shù)值的問題,關(guān)鍵是明確兩向量垂直,則向量數(shù)量積為零.12、【解析】

先利用二倍角公式對(duì)函數(shù)解析式進(jìn)行化簡整理,進(jìn)而利用三角函數(shù)最小正周期公式可得函數(shù)的最小正周期.【詳解】解:由題意可得:,可得函數(shù)的最小正周期為:,故答案為:.【點(diǎn)睛】本題主要考查二倍角的化簡求值和三角函數(shù)周期性的求法,屬于基礎(chǔ)知識(shí)的考查.13、1275【解析】

根據(jù)遞推關(guān)系式可求得,從而利用并項(xiàng)求和的方法將所求的和轉(zhuǎn)化為,利用等差數(shù)列求和公式求得結(jié)果.【詳解】由得:則,即本題正確結(jié)果:【點(diǎn)睛】本題考查并項(xiàng)求和法、等差數(shù)列求和公式的應(yīng)用,關(guān)鍵是能夠利用遞推關(guān)系式得到數(shù)列相鄰兩項(xiàng)之間的關(guān)系,從而采用并項(xiàng)的方式來進(jìn)行求解.14、【解析】

先利用周期公式求出,再利用平移法則得到新的函數(shù)表達(dá)式,依據(jù)函數(shù)為奇函數(shù),求出的表達(dá)式,即可求出的最小值.【詳解】由得,所以,向左平移個(gè)單位后,得到,因?yàn)槠鋱D像關(guān)于原點(diǎn)對(duì)稱,所以函數(shù)為奇函數(shù),有,則,故的最小值為.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)以及圖像變換,以及型的函數(shù)奇偶性判斷條件.一般地為奇函數(shù),則;為偶函數(shù),則;為奇函數(shù),則;為偶函數(shù),則.15、16【解析】

根據(jù)已知條件可計(jì)算出扇形的半徑,然后根據(jù)面積公式即可計(jì)算出扇形的面積.【詳解】設(shè)扇形的半徑為,圓心角弧度數(shù)為,所以即,所以,所以.故答案為:.【點(diǎn)睛】本題考查角度與弧度的轉(zhuǎn)化以及扇形的弧長和面積公式,難度較易.扇形的弧長公式:,扇形的面積公式:.16、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函數(shù),∴g(x)圖象關(guān)于y軸對(duì)稱,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函數(shù),在[﹣,0)是減函數(shù),故③x1>|x2|;④時(shí),g(x1)>g(x2)恒成立,故答案為:③④.點(diǎn)睛:此題考查的是函數(shù)的單調(diào)性的應(yīng)用;已知表達(dá)式,根據(jù)表達(dá)式判斷函數(shù)的單調(diào)性,和奇偶性,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反,根據(jù)單調(diào)性的定義可知,增函數(shù)自變量越大函數(shù)值越大,減函數(shù)自變量越大函數(shù)值越小。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)最小值-2.【解析】

試題分析:(1)∵M(jìn)是BC的中點(diǎn),∴=(+).代入=-2,得=--,即++=0(2)若P為中線AM上的一個(gè)動(dòng)點(diǎn),若AM=2,我們易將·(+),轉(zhuǎn)化為-2||||=2(x-1)2-2的形式,然后根據(jù)二次函數(shù)在定區(qū)間上的最值的求法,得到答案.試題解析:(1)證明:∵M(jìn)是BC的中點(diǎn),∴=(+)代入=-2,得=--,即++=0(2)設(shè)||=x,則||=2-x(0≤x≤2)∵M(jìn)是BC的中點(diǎn),∴+=2∴·(+)=2·=-2||||=-2x(2-x)=2(x2-2x)=2(x-1)2-2,當(dāng)x=1時(shí),取最小值-2考點(diǎn):平面向量數(shù)量積的運(yùn)算.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?8、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】

(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時(shí)取等號(hào))即面積的最大值為:【點(diǎn)睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識(shí);求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對(duì)應(yīng)關(guān)系來進(jìn)行求解.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)以作為基底,表示出,然后利用數(shù)量積的運(yùn)算法則計(jì)算即可求出;(Ⅱ)由平面向量數(shù)量積的運(yùn)算及其運(yùn)算可得:設(shè),又,所以,解得,得解.【詳解】(Ⅰ)由題意得,則(Ⅱ)因?yàn)辄c(diǎn)Q是線段上一點(diǎn),所以設(shè),又,所以,故,解得,因此所求實(shí)數(shù)m的值為.【點(diǎn)睛】本題主要考查了平面向量的線性運(yùn)算以及數(shù)量積的運(yùn)算以及平面向量基本定理的應(yīng)用,屬于中檔題.20、(1)證明見解析.(2).【解析】

(1)根據(jù)數(shù)列通項(xiàng)公式的特征,我們對(duì),兩邊同時(shí)除以,得到,利用等差數(shù)列的定義,就可以證明出數(shù)列是等差數(shù)列;(2)求出數(shù)列的通項(xiàng)公式,利用裂項(xiàng)相消法,求出數(shù)列的前n項(xiàng)和.【詳解】(1)的兩邊同除以,得,又,所以數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列.(2)由(1)得,即,故,所以【點(diǎn)睛】本題考查了證明等差數(shù)列的方法以及用裂項(xiàng)相消法求數(shù)列前和.已知,都是等差數(shù)列,那么數(shù)列的前和就

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論