版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省鄒城市實(shí)驗(yàn)中學(xué)2025屆高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列函數(shù)中,既是偶函數(shù),又在上遞增的函數(shù)的個數(shù)是().①;②;③;④向右平移后得到的函數(shù).A. B. C. D.2.在,內(nèi)角所對的邊分別為,且,則()A. B. C. D.13.函數(shù)的一個對稱中心是()A. B. C. D.4.已知函數(shù),那么下列式子:①;②;③;④;其中恒成立的是()A.①② B.②③ C.①②④ D.②③④5.等差數(shù)列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.6.已知圓(為圓心,且在第一象限)經(jīng)過,,且為直角三角形,則圓的方程為()A. B.C. D.7.設(shè)集合,則()A. B. C. D.8.已知向量,且,則m=()A.?8 B.?6C.6 D.89.設(shè),是兩個不同的平面,a,b是兩條不同的直線,給出下列四個命題,正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則10.在一段時間內(nèi),某種商品的價格(元)和銷售量(件)之間的一組數(shù)據(jù)如下表:價格(元)4681012銷售量(件)358910若與呈線性相關(guān)關(guān)系,且解得回歸直線的斜率,則的值為()A.0.2 B.-0.7 C.-0.2 D.0.7二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,從五個點(diǎn):中任取三個,這三點(diǎn)能構(gòu)成三角形的概率是_______.12.某射手的一次射擊中,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,則此射手在一次射擊中不超過8環(huán)的概率為_________.13.設(shè)的內(nèi)角、、的對邊分別為、、,且滿足.則______.14.等比數(shù)列中首項(xiàng),公比,則______.15.已知向量,,則與的夾角等于_______.16.在等比數(shù)列中,若,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.正方體的棱長為點(diǎn)分別是棱的中點(diǎn)(1)證明:四邊形是一個梯形:(2)求幾何體的表面積和體積18.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知向量,又點(diǎn),,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.19.若數(shù)列中存在三項(xiàng),按一定次序排列構(gòu)成等比數(shù)列,則稱為“等比源數(shù)列”。(1)在無窮數(shù)列中,,,求數(shù)列的通項(xiàng)公式;(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;(3)已知無窮數(shù)列為等差數(shù)列,且,(),求證:數(shù)列為“等比源數(shù)列”.20.如圖在四棱錐中,底面是矩形,點(diǎn)、分別是棱和的中點(diǎn).(1)求證:平面;(2)若,且平面平面,證明平面.21.某銷售公司通過市場調(diào)查,得到某種商品的廣告費(fèi)(萬元)與銷售收入(萬元)之間的數(shù)據(jù)如下:廣告費(fèi)(萬元)1245銷售收入(萬元)10224048(1)求銷售收入關(guān)于廣告費(fèi)的線性回歸方程;(2)若該商品的成本(除廣告費(fèi)之外的其他費(fèi)用)為萬元,利用(1)中的回歸方程求該商品利潤的最大值(利潤=銷售收入-成本-廣告費(fèi)).參考公式:,.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
將①②③④中的函數(shù)解析式化簡,分析各函數(shù)的奇偶性及其在區(qū)間上的單調(diào)性,可得出結(jié)論.【詳解】對于①中的函數(shù),該函數(shù)為偶函數(shù),當(dāng)時,,該函數(shù)在區(qū)間上不單調(diào);對于②中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞減;對于③中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞增;對于④,將函數(shù)向右平移后得到的函數(shù)為,該函數(shù)為奇函數(shù),且當(dāng)時,,則函數(shù)在區(qū)間上不單調(diào).故選:B.【點(diǎn)睛】本題考查三角函數(shù)單調(diào)性與奇偶性的判斷,同時也考查了三角函數(shù)的相位變換,熟悉正弦、余弦和正切函數(shù)的基本性質(zhì)是判斷的關(guān)鍵,考查推理能力,屬于中等題.2、C【解析】
直接利用余弦定理求解.【詳解】由余弦定理得.故選C【點(diǎn)睛】本題主要考查余弦定理解三角形,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.3、A【解析】
令,得:,即函數(shù)的對稱中心為,再求解即可.【詳解】解:令,解得:,即函數(shù)的對稱中心為,令,即函數(shù)的一個對稱中心是,故選:A.【點(diǎn)睛】本題考查了正切函數(shù)的對稱中心,屬基礎(chǔ)題.4、A【解析】
根據(jù)正弦函數(shù)的周期性及對稱性,逐項(xiàng)判斷,即可得到本題答案.【詳解】由,得,所以的最小正周期為,即,故①正確;由,令,得的對稱軸為,所以是的對稱軸,不是的對稱軸,故②正確,③不正確;由,令,得的對稱中心為,所以不是的對稱中心,故④不正確.故選:A【點(diǎn)睛】本題主要考查正弦函數(shù)的周期性以及對稱性.5、A【解析】試題分析:由已知得,a42=a2?a8,又因?yàn)閧an}【考點(diǎn)】1、等差數(shù)列通項(xiàng)公式;2、等比中項(xiàng);3、等差數(shù)列前n項(xiàng)和.6、D【解析】
設(shè)且,半徑為,根據(jù)題意列出方程組,求得的值,即可求解.【詳解】依題意,圓經(jīng)過點(diǎn),可設(shè)且,半徑為,則,解得,所以圓的方程為.【點(diǎn)睛】本題主要考查了圓的標(biāo)準(zhǔn)方程的求解,其中解答中熟記圓的標(biāo)準(zhǔn)方程的形式,以及合理應(yīng)用圓的性質(zhì)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.7、B【解析】
補(bǔ)集:【詳解】因?yàn)?,所?選B.【點(diǎn)睛】本題主要考查了集合的運(yùn)算,需要掌握交集、并集、補(bǔ)集的運(yùn)算。屬于基礎(chǔ)題。8、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.9、C【解析】
利用線面、面面之間的位置關(guān)系逐一判斷即可.【詳解】對于A,若,,則平行、相交、異面均有可能,故A不正確;對于B,若,,,則垂直、平行均有可能,故B不正確;對于C,若,,,根據(jù)線面垂直的定義可知內(nèi)的兩條相交線線與內(nèi)的兩條相交線平行,故,故C正確;對于D,由C可知,D不正確;故選:C【點(diǎn)睛】本題考查了由線面平行、線面垂直判斷線面、線線、面面之間的位置關(guān)系,屬于基礎(chǔ)題.10、C【解析】
由題意利用線性回歸方程的性質(zhì)計(jì)算可得的值.【詳解】由于,,由于線性回歸方程過樣本中心點(diǎn),故:,據(jù)此可得:.故選C.【點(diǎn)睛】本題主要考查線性回歸方程的性質(zhì)及其應(yīng)用,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
分別算出兩點(diǎn)間的距離,共有種,構(gòu)成三角形的條件為任意兩邊之和大于第三邊,所以在這10種中找出滿足條件的即可.【詳解】由兩點(diǎn)之間的距離公式,得:,,,任取三點(diǎn)有:,共10種,能構(gòu)成三角形的有:,共6種,所求概率為:.【點(diǎn)睛】構(gòu)成三角形必須滿足任意兩邊之和大于第三邊,則n個點(diǎn)共有個線段,找出滿足條件的即可,屬于中等難度題目.12、0.5【解析】
由互斥事件的概率加法求出射手在一次射擊中超過8環(huán)的概率,再利用對立事件的概率求出不超過8環(huán)的概率即可.【詳解】由題意,射中10環(huán)、9環(huán)、8環(huán)的概率分別為0.2、0.3、0.1,所以射手的一次射擊中超過8環(huán)的概率為:0.2+0.3=0.5故射手的一次射擊中不超過8環(huán)的概率為:1-0.5=0.5故答案為0.5【點(diǎn)睛】本題主要考查了對立事件的概率,屬于基礎(chǔ)題.13、4【解析】
解法1有題設(shè)及余弦定理得.故.解法2如圖4,過點(diǎn)作,垂足為.則,.由題設(shè)得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.14、9【解析】
根據(jù)等比數(shù)列求和公式,將進(jìn)行轉(zhuǎn)化,然后得到關(guān)于和的等式,結(jié)合,討論出和的值,得到答案.【詳解】因?yàn)榈缺葦?shù)列中首項(xiàng),公比,所以成首項(xiàng)為,公比為的等比數(shù)列,共項(xiàng),所以整理得因?yàn)樗钥傻?,等式右邊為整?shù),故等式左邊也需要為整數(shù),則應(yīng)是的約數(shù),所以可得,所以,當(dāng)時,得,此時當(dāng)時,得,此時當(dāng)時,得,此時,所以,故答案為:.【點(diǎn)睛】本題考查等比數(shù)列求和的基本量運(yùn)算,涉及分類討論的思想,屬于中檔題.15、【解析】
由已知向量的坐標(biāo)求得兩向量的模及數(shù)量積,代入數(shù)量積求夾角公式得答案.【詳解】∵(﹣1,),(,﹣1),∴,,則cos,∴與的夾角等于.故答案為:.【點(diǎn)睛】本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是基礎(chǔ)題.16、80【解析】
由即可求出【詳解】因?yàn)槭堑缺葦?shù)列,所以,所以即故答案為:80【點(diǎn)睛】本題考查的是等比數(shù)列的性質(zhì),較簡單三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)表面積為,體積為【解析】
(1)在正方體中,根據(jù)分別是棱的中點(diǎn),由中位線得到且,又由,根據(jù)公理4平行關(guān)系的傳遞性得證.(2)幾何體的表面積,上下底是直角三角形,三個側(cè)面,有兩個是全等的直角梯形,另一個是等腰梯形求解,體積按照棱臺體積公式求解.【詳解】(1)如圖所示:在正方體中,因?yàn)榉謩e是棱的中點(diǎn),所以且,又因?yàn)?,所以且,所以四邊形是一個梯形.(2)幾何體的表面積為:.體積為:.【點(diǎn)睛】本題主要考查幾何體中的截面問題,還考查了空間想象,抽象概括,推理論證的能力,屬于中檔題.18、(1)或;(2)當(dāng)時的值域?yàn)?時的值域?yàn)?【解析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結(jié)合向量與向量共線,常數(shù),建立的表達(dá)式,代入,對分類討論,綜合三角函數(shù)和二次函數(shù)的圖象與性質(zhì),即可求出值域.詳解:(1),∵,且,∴,,解得,時,;時,.∴向量或.(2),∵向量與向量共線,常數(shù),∴,∴.①當(dāng)即時,當(dāng)時,取得最大值,時,取得最小值,此時函數(shù)的值域?yàn)?②當(dāng)即時,當(dāng)時,取得最大值,時,取得最小值,此時函數(shù)的值域?yàn)?綜上所述,當(dāng)時的值域?yàn)?時的值域?yàn)?點(diǎn)睛:本題考查了向量的坐標(biāo)運(yùn)算、向量垂直和共線的定理、模的計(jì)算、三角函數(shù)的值域等問題,考查了分類討論方法、推理與計(jì)算能力.19、(1);(2)不是,證明見解析;(3)證明見解析.【解析】
(1)由,可得出,則數(shù)列為等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式可間接求出;(2)假設(shè)數(shù)列為“等比源數(shù)列”,則此數(shù)列中存在三項(xiàng)成等比數(shù)列,可得出,展開后得出,然后利用數(shù)的奇偶性即可得出結(jié)論;(3)設(shè)等差數(shù)列的公差為,假設(shè)存在三項(xiàng)使得,展開得出,從而可得知,當(dāng),時,原命題成立.【詳解】(1),得,即,且.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則,因此,;(2)數(shù)列不是“等比源數(shù)列”,下面用反證法來證明.假設(shè)數(shù)列是“等比源數(shù)列”,則存在三項(xiàng)、、,設(shè).由于數(shù)列為單調(diào)遞增的正項(xiàng)數(shù)列,則,所以.得,化簡得,等式兩邊同時除以得,,且、、,則,,,,則為偶數(shù),為奇數(shù),等式不成立.因此,數(shù)列中不存在任何三項(xiàng),按一定的順序排列構(gòu)成“等比源數(shù)列”;(3)不妨設(shè)等差數(shù)列的公差.當(dāng)時,等差數(shù)列為非零常數(shù)列,此時,數(shù)列為“等比源數(shù)列”;當(dāng)時,,則且,數(shù)列中必有一項(xiàng),為了使得數(shù)列為“等比源數(shù)列”,只需數(shù)列中存在第項(xiàng)、第項(xiàng)使得,且有,即,,當(dāng)時,即當(dāng),時,等式成立,所以,數(shù)列中存在、、成等比數(shù)列,因此,等差數(shù)列是“等比源數(shù)列”.【點(diǎn)睛】本題考查數(shù)列新定義“等比源數(shù)列”的應(yīng)用,同時也考查了利用待定系數(shù)法求數(shù)列的通項(xiàng),也考查“等比源數(shù)列”的證明,考查計(jì)算能力與推理能力,屬于難題.20、(1)見證明;(2)見證明【解析】
(1)可證,從而得到要求證的線面平行.(2)可證,再由及是棱的中點(diǎn)可得,從而得到平面.【詳解】(1)證明:因?yàn)辄c(diǎn)、分別是棱和的中點(diǎn),所以,又在矩形中,,所以,又面,面,所以平面(2)證明:在矩形中,,又平面平面,平面平面,面,所以平面,又面,所以①因?yàn)榍沂堑闹悬c(diǎn),所以,②由①②及面,面,,所以平面.【點(diǎn)睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能停車系統(tǒng)車庫交易合同2篇
- 二零二五年度家政服務(wù)與家庭旅游策劃合同3篇
- 二零二五年度叉車維修保養(yǎng)與維修設(shè)備租賃合同2篇
- 2025年度綜合體物業(yè)房使用及公共設(shè)施維護(hù)協(xié)議3篇
- 二零二五年度大棚養(yǎng)殖廢棄物資源化利用合作協(xié)議2篇
- 二零二五年度文化旅游項(xiàng)目借款及旅游資源擔(dān)保服務(wù)協(xié)議3篇
- 二零二五年度保障性住房置換合同范本
- 二零二五年度ISO9001質(zhì)量管理體系認(rèn)證咨詢與實(shí)施合同3篇
- 二零二五年度加油站油品供應(yīng)與信息化建設(shè)合同3篇
- 船舶管系課程設(shè)計(jì)
- 女裝行業(yè)退貨率分析
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 純視覺方案算法
- 道士述職報告
- 綠色貸款培訓(xùn)課件
- 2024年七年級語文上學(xué)期期末作文題目及范文匯編
- 云南省昆明市五華區(qū)2023-2024學(xué)年九年級上學(xué)期期末英語試卷+
- 2023年生產(chǎn)運(yùn)營副總經(jīng)理年度總結(jié)及下一年計(jì)劃
- 2023年中考語文標(biāo)點(diǎn)符號(頓號)練習(xí)(含答案)
- 施工圖審查招標(biāo)文件范文
- 布袋式除塵器制造工序檢驗(yàn)規(guī)定
評論
0/150
提交評論