![2024屆江蘇省泰州市高港區(qū)口岸實驗校中考沖刺卷數學試題含解析_第1頁](http://file4.renrendoc.com/view5/M01/07/02/wKhkGGZ5douAQ6VqAAIS4YJ_pMw825.jpg)
![2024屆江蘇省泰州市高港區(qū)口岸實驗校中考沖刺卷數學試題含解析_第2頁](http://file4.renrendoc.com/view5/M01/07/02/wKhkGGZ5douAQ6VqAAIS4YJ_pMw8252.jpg)
![2024屆江蘇省泰州市高港區(qū)口岸實驗校中考沖刺卷數學試題含解析_第3頁](http://file4.renrendoc.com/view5/M01/07/02/wKhkGGZ5douAQ6VqAAIS4YJ_pMw8253.jpg)
![2024屆江蘇省泰州市高港區(qū)口岸實驗校中考沖刺卷數學試題含解析_第4頁](http://file4.renrendoc.com/view5/M01/07/02/wKhkGGZ5douAQ6VqAAIS4YJ_pMw8254.jpg)
![2024屆江蘇省泰州市高港區(qū)口岸實驗校中考沖刺卷數學試題含解析_第5頁](http://file4.renrendoc.com/view5/M01/07/02/wKhkGGZ5douAQ6VqAAIS4YJ_pMw8255.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省泰州市高港區(qū)口岸實驗校中考沖刺卷數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列運算結果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a22.如圖,將函數y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+43.將一副三角板按如圖方式擺放,∠1與∠2不一定互補的是()A. B. C. D.4.二次函數y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.5.若x>y,則下列式子錯誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.6.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.7.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對8.下列各數中負數是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)39.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π10.二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數圖象上,當0<x1<x2時,y1<y2,其中正確的是()A.①②④ B.①③ C.①②③ D.①③④二、填空題(本大題共6個小題,每小題3分,共18分)11.一元二次方程x2=3x的解是:________.12.如圖所示的網格是正方形網格,點P到射線OA的距離為m,點P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)13.某學校組織學生到首鋼西十冬奧廣場開展綜合實踐活動,數學小組的同學們在距奧組委辦公樓(原首鋼老廠區(qū)的筒倉)20m的點B處,用高為0.8m的測角儀測得筒倉頂點C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)14.當__________時,二次函數有最小值___________.15.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.16.如圖,當半徑為30cm的轉動輪轉過120角時,傳送帶上的物體A平移的距離為______cm.三、解答題(共8題,共72分)17.(8分)如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經過點B、C,與x軸的另一個交點為點A(點A在點B的左側),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結合函數的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.18.(8分)如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.
19.(8分)為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學生人數為
人,參加球類活動的人數的百分比為
(2)請把圖2(條形統(tǒng)計圖)補充完整;
(3)該校學生共600人,則參加棋類活動的人數約為.
(4)該班參加舞蹈類活動的4位同學中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
20.(8分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.21.(8分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.22.(10分)如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點O逆時針旋轉交AB于點E′,交BC于點F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.23.(12分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數量關系.經過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD=BD.(2)探究證明將直線MN繞點A順時針旋轉到圖2的位置寫出此時線段DC,AD,BD之間的數量關系,并證明(3)拓展延伸在直線MN繞點A旋轉的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫B(tài)D的長.24.如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【點睛】本題主要考查整式的運算,解題的關鍵是掌握多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則.2、D【解析】
∵函數的圖象過點A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),過A作AC∥x軸,交B′B的延長線于點C,則C(4,),∴AC=4﹣1=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴AC?AA′=3AA′=9,∴AA′=3,即將函數的圖象沿y軸向上平移3個單位長度得到一條新函數的圖象,∴新圖象的函數表達式是.故選D.3、D【解析】A選項:∠1+∠2=360°-90°×2=180°;B選項:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項:∠1和∠2不一定互補.故選D.點睛:本題主要掌握平行線的性質與判定定理,關鍵在于通過角度之間的轉化得出∠1和∠2的互補關系.4、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據此得最小值為1m為負數,最大值為1n為正數.將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.5、B【解析】根據不等式的性質在不等式兩邊加(或減)同一個數(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數,不等號的方向不變;不等式兩邊乘(或除以)同一個負數,不等號的方向改變即可得出答案:A、不等式兩邊都減3,不等號的方向不變,正確;B、乘以一個負數,不等號的方向改變,錯誤;C、不等式兩邊都加3,不等號的方向不變,正確;D、不等式兩邊都除以一個正數,不等號的方向不變,正確.故選B.6、A【解析】
由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,
矩形的面積=,
故,
故選:A.【點睛】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關鍵.7、D【解析】
根據矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數.【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【點睛】此題主要考查矩形的性質及全等三角形的判定,解題的關鍵是熟知矩形的對稱性.8、B【解析】
首先利用相反數,絕對值的意義,乘方計算方法計算化簡,進一步利用負數的意義判定即可.【詳解】A、-(-2)=2,是正數;B、-|-2|=-2,是負數;C、(-2)2=4,是正數;D、-(-2)3=8,是正數.故選B.【點睛】此題考查負數的意義,利用相反數,絕對值的意義,乘方計算方法計算化簡是解決問題的關鍵.9、B【解析】
先依據勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.10、B【解析】∵函數圖象的對稱軸為:x=-==1,∴b=﹣2a,即2a+b=0,①正確;由圖象可知,當﹣1<x<3時,y<0,②錯誤;由圖象可知,當x=1時,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,③正確;∵拋物線的對稱軸為x=1,開口方向向上,∴若(x1,y1)、(x2,y2)在函數圖象上,當1<x1<x2時,y1<y2;當x1<x2<1時,y1>y2;故④錯誤;故選B.點睛:本題主要考查二次函數的相關知識,解題的關鍵是:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理.二、填空題(本大題共6個小題,每小題3分,共18分)11、x1=0,x2=1【解析】
先移項,然后利用因式分解法求解.【詳解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案為:x1=0,x2=1【點睛】本題考查了解一元二次方程-因式分解法:先把方程右邊變形為0,再把方程左邊分解為兩個一次式的乘積,這樣原方程轉化為兩個一元一次方程,然后解一次方程即可得到一元二次方程的解12、>【解析】
由圖像可知在射線OP上有一個特殊點Q,點Q到射線OA的距離QD=2,點Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數sin∠AOP>【詳解】由題意可知:找到特殊點Q,如圖所示:設點Q到射線OA的距離QD,點Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點睛】本題考查了點到線的距離,熟知在直角三角形中利用三角函數來解角和邊的關系是解題關鍵.13、40.0【解析】
首先過點A作AE∥BD,交CD于點E,易證得四邊形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函數的定義,而求得CE的長,繼而求得筒倉CD的高.【詳解】過點A作AE∥BD,交CD于點E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四邊形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE?tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒倉CD的高約40.0m,故答案為:40.0【點睛】此題考查解直角三角形的應用?仰角的定義,注意能借助仰角構造直角三角形并解直角三角形是解此題的關鍵,注意數形結合思想的應用.14、15【解析】二次函數配方,得:,所以,當x=1時,y有最小值5,故答案為1,5.15、.【解析】
過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標為(,),將點C的坐標代入反比例函數解析式可得:,將點D的坐標代入反比例函數解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數圖象上點的坐標特征;2.等邊三角形的性質.16、20π【解析】解:=20πcm.故答案為20πcm.三、解答題(共8題,共72分)17、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】
(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2),當直線l2經過點D時求得m=﹣2;當直線l2經過點C時求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當直線l2在x軸的下方時,點Q在點P、N之間和當直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點為D(2,﹣2),當直線l2經過點D時,m=﹣2;當直線l2經過點C時,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當直線l2在x軸的下方時,點Q在點P、N之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點P、Q關于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點Q(x2,y2)的坐標代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負值已舍去),∴m=()2﹣4×+3=如圖②,當直線l2在x軸的上方時,點N在點P、Q之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PN=NQ.由上可得點P、Q關于直線l2對稱,∴點N在拋物線的對稱軸l2:x=2,又點N在直線y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點睛】本題是二次函數綜合題,本題為二次函數的綜合應用,涉及待定系數法、函數圖象的交點、線段的中點及分類討論思想等知識.在(2)中注意待定系數法的應用;在(2)①注意利用數形結合思想;在(2)②注意分情況討論.本題考查知識點較多,綜合性較強,難度較大.18、(2)1【解析】試題分析:(1)連結OC,由=,根據圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據切線的判定定理得到CD是⊙O的切線;(2)連結BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三邊的關系得BC=AC=1,AB=2BC=8,所以⊙O的半徑為1.試題解析:(1)證明:連結OC,如圖,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切線(2)解:連結BC,如圖∵AB為直徑∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半徑為1.考點:圓周角定理,切線的判定定理,30°的直角三角形三邊的關系19、(1)7、30%;(2)補圖見解析;(3)105人;(3)
【解析】試題分析:(1)先根據繪畫類人數及其百分比求得總人數,繼而可得答案;(2)根據(1)中所求數據即可補全條形圖;(3)總人數乘以棋類活動的百分比可得;(4)利用樹狀圖法列舉出所有可能的結果,然后利用概率公式即可求解.試題解析:解:(1)本次調查的總人數為10÷25%=40(人),∴參加音樂類活動的學生人數為40×17.5%=7人,參加球類活動的人數的百分比為×100%=30%,故答案為7,30%;(2)補全條形圖如下:(3)該校學生共600人,則參加棋類活動的人數約為600×=105,故答案為105;(4)畫樹狀圖如下:共有12種情況,選中一男一女的有6種,則P(選中一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大小.20、(1)見解析;(2)①;②cos∠AFE=【解析】
(1)用特殊值法,設,則,證,可求出CF,DF的長,即可求出結論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設CF=2,則CE=6,可設AT=x,則TF=3x,,,分別用含x的代數式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結論.【詳解】(1)設BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設CF=2,則CE=6,可設AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【點睛】本題主要考查了三角形相似的判定及性質的綜合應用,熟練掌握三角形相似的判定及性質是解決本題的關鍵.21、(1)證明見解析;(2)1.【解析】試題分析:(1)根據矩形的性質得到AB=CD,∠B=∠D=90°,根據折疊的性質得到∠E=∠B,AB=AE,根據全等三角形的判定定理即可得到結論;(2)根據全等三角形的性質得到AF=CF,EF=DF,根據勾股定理得到DF=3,根據三角形的面積公式即可得到結論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質,熟練掌握折疊的性質是解題的關鍵.22、(1);(2)①2,②【解析】分析:(1)重合部分是等邊三角形,計算出邊長即可.①證明:在圖3中,取AB中點E,證明≌,即可得到,②由①知,在旋轉過程60°中始終有≌四邊形的面積等于=.詳解:(1)∵四邊形為菱形,∴∴為等邊三角形∴∵AD//∴∴為等邊三角形,邊長∴重合部分的面積:①證明:在圖3中,取AB中點E,由上題知,∴又∵∴≌,∴∴,②由①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版八年級道德與法治上冊聽課評課記錄《7.2服務社會》
- 2024-2025學年八年級物理全冊1.3站在巨人的肩膀上練習含解析新版滬科版
- 技術員年度工作規(guī)劃
- 公司行政部門個人工作計劃
- 年度幼兒教師個人工作計劃
- 物業(yè)客服部工作計劃范本
- 可調單價合同范本
- 知識產權授權協(xié)議書范本
- 商業(yè)店鋪租賃合同范本
- 紅河衛(wèi)生職業(yè)學院《物理化學(II)》2023-2024學年第二學期期末試卷
- 2024福建省廈門市總工會擬錄用人員筆試歷年典型考題及考點剖析附答案帶詳解
- DL-T-805.1-2011火電廠汽水化學導則第1部分:鍋爐給水加氧處理導則
- 《電力系統(tǒng)自動化運維綜合實》課件-2M 同軸電纜制作
- 《會計學原理》習題及答案
- 會議禮儀頒獎培訓課件
- 保衛(wèi)管理員培訓課件
- 違停抓拍方案
- 2024年部編版一年級下冊語文期末專項復習-非連續(xù)性文本閱讀
- 售前工程師工作總結
- 《智能物聯(lián)網導論》AIoT導論-第3章課件
- 《農業(yè)產業(yè)發(fā)展規(guī)劃》課件
評論
0/150
提交評論