黑龍江省哈爾濱市第四十一中學2024屆中考數學最后沖刺模擬試卷含解析_第1頁
黑龍江省哈爾濱市第四十一中學2024屆中考數學最后沖刺模擬試卷含解析_第2頁
黑龍江省哈爾濱市第四十一中學2024屆中考數學最后沖刺模擬試卷含解析_第3頁
黑龍江省哈爾濱市第四十一中學2024屆中考數學最后沖刺模擬試卷含解析_第4頁
黑龍江省哈爾濱市第四十一中學2024屆中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱市第四十一中學2024屆中考數學最后沖刺模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.﹣0.2的相反數是()A.0.2 B.±0.2 C.﹣0.2 D.22.下列關于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=03.下列式子中,與互為有理化因式的是()A. B. C. D.4.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結束.設運動時間為x,弦BP的長度為y,那么下面圖象中可能表示y與x的函數關系的是A.① B.④ C.②或④ D.①或③5.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結論錯誤的是()A. B. C. D.6.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.7.若代數式有意義,則實數x的取值范圍是()A.x>0 B.x≥0 C.x≠0 D.任意實數8.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.二次函數y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.10.如圖,已知在△ABC,AB=AC.若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE二、填空題(本大題共6個小題,每小題3分,共18分)11.同圓中,已知弧AB所對的圓心角是100°,則弧AB所對的圓周角是_____.12.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.13.如圖,在5×5的正方形(每個小正方形的邊長為1)網格中,格點上有A、B、C、D、E五個點,如果要求連接兩個點之后線段的長度大于3且小于4,則可以連接_____.(寫出一個答案即可)14.如圖,在4×4的方格紙中(共有16個小方格),每個小方格都是邊長為1的正方形.O、A、B分別是小正方形的頂點,則扇形OAB周長等于_____.(結果保留根號及π).15.某地區(qū)的居民用電,按照高峰時段和空閑時段規(guī)定了不同的單價.某戶5月份高峰時段用電量是空閑時段用電量2倍,6月份高峰時段用電量比5月份高峰時段用電量少50%,結果6月份的用電量和5月份的用電量相等,但6月份的電費卻比5月份的電費少25%,求該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低的百分率是_____.16.墊球是排球隊常規(guī)訓練的重要項目之一.如圖所示的數據是運動員張華十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.則運動員張華測試成績的眾數是_____.三、解答題(共8題,共72分)17.(8分)如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點E、F、G、H運動過程中,判斷直線EG是否經過某一個定點,如果是,請證明你的結論;如果不是,請說明理由18.(8分)已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結AD(1)求證:△ABC≌△AOD.(2)設△ACD的面積為s,求s關于m的函數關系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.19.(8分)某景區(qū)內從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時間,然后繼續(xù)按原速前往乙地,景區(qū)從甲地開往乙地的電瓶車每隔半小時發(fā)一趟車,速度是,若小華與第1趟電瓶車同時出發(fā),設小華距乙地的路程為,第趟電瓶車距乙地的路程為,為正整數,行進時間為.如圖畫出了,與的函數圖象.(1)觀察圖,其中,;(2)求第2趟電瓶車距乙地的路程與的函數關系式;(3)當時,在圖中畫出與的函數圖象;并觀察圖象,得出小華在休息后前往乙地的途中,共有趟電瓶車駛過.20.(8分)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數.21.(8分)數學活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側,小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時,小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時,小華測量小明距離旗桿的距離EN=5米,經測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點A,B′的距離均忽略不計),且AD、MN、B′E均與地面垂直,請你根據測量的數據,計算旗桿MN的高度.22.(10分)海中有一個小島P,它的周圍18海里內有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.23.(12分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數;求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.24.為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數;求攝像頭下端點F到地面AB的距離.(精確到百分位)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據相反數的定義進行解答即可.【詳解】負數的相反數是它的絕對值,所以﹣0.2的相反數是0.2.故選A.【點睛】本題主要考查相反數的定義,熟練掌握這個知識點是解題關鍵.2、B【解析】

根據一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數;②只含有一個未知數;③未知數的最高次數是2進行分析即可.【詳解】A.未知數的最高次數不是2

,不是一元二次方程,故此選項錯誤;

B.

是一元二次方程,故此選項正確;

C.

未知數的最高次數是3,不是一元二次方程,故此選項錯誤;

D.

a=0時,不是一元二次方程,故此選項錯誤;

故選B.【點睛】本題考查一元二次方程的定義,解題的關鍵是明白:一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數;②只含有一個未知數;③未知數的最高次數是2.3、B【解析】

直接利用有理化因式的定義分析得出答案.【詳解】∵()(,)=12﹣2,=10,∴與互為有理化因式的是:,故選B.【點睛】本題考查了有理化因式,如果兩個含有二次根式的非零代數式相乘,它們的積不含有二次根式,就說這兩個非零代數式互為有理化因式.單項二次根式的有理化因式是它本身或者本身的相反數;其他代數式的有理化因式可用平方差公式來進行分步確定.4、D【解析】

分兩種情形討論當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①,由此即可解決問題.【詳解】解:當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①.故選D.5、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.6、B【解析】

在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應用、銳角三角函數等知識,解題的關鍵是學會利用參數解決問題.7、C【解析】

根據分式和二次根式有意義的條件進行解答.【詳解】解:依題意得:x2≥1且x≠1.解得x≠1.故選C.【點睛】考查了分式有意義的條件和二次根式有意義的條件.解題時,注意分母不等于零且被開方數是非負數.8、C【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.9、D【解析】

由m≤x≤n和mn<0知m<0,n>0,據此得最小值為1m為負數,最大值為1n為正數.將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,

1m=-(n-1)1+5,n=,∴m=,

∵m<0,

∴此種情形不合題意,所以m+n=﹣1+=.10、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點B為圓心,BC長為半徑畫弧,交腰AC于點E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點睛:本題考查了等腰三角形的性質,當等腰三角形的底角對應相等時其頂角也相等,難度不大.二、填空題(本大題共6個小題,每小題3分,共18分)11、50°【解析】【分析】直接利用圓周角定理進行求解即可.【詳解】∵弧AB所對的圓心角是100°,∴弧AB所對的圓周角為50°,故答案為:50°.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.12、1【解析】

本題首先由等邊三角形的性質及垂直定義得到∠DBE=60°,∠BEC=90°,再根據等腰三角形的性質可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據三角形內角和定理得出關系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【點睛】本題主要考查等腰三角形的性質及等邊三角形的性質及垂直定義,解題的關鍵是根據三角形內角和定理列出符合題意的簡易方程,從而求出結果.13、答案不唯一,如:AD【解析】

根據勾股定理求出,根據無理數的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點睛】本題考查了無理數的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.14、π+4【解析】根據正方形的性質,得扇形所在的圓心角是90°,扇形的半徑是2.解:根據圖形中正方形的性質,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧長等于π.15、60%【解析】

設空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,根據總價=單價×數量結合6月份的電費卻比5月份的電費少25%,即可得出關于x,y的二元一次方程,解之即可得出x,y之間的關系,進而即可得出結論.【詳解】設空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,依題意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低×100%=60%.故答案為60%.【點睛】本題考查了二元一次方程的應用,找準等量關系,正確列出二元一次方程是解題的關鍵.16、1【解析】

根據眾數定義:一組數據中出現次數最多的數據叫做眾數可得答案.【詳解】運動員張華測試成績的眾數是1.故答案為1.【點睛】本題主要考查了眾數,關鍵是掌握眾數定義.三、解答題(共8題,共72分)17、(1)見解析;(2)直線EG經過一個定點,這個定點為正方形的中心(AC、BD的交點);理由見解析.【解析】分析:(1)由正方形的性質得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明△AEH≌△CGF即可求解;(2)連接AC、EG,交點為O;先證明△AOE≌△COG,得出OA=OC,證出O為對角線AC、BD的交點,即O為正方形的中心.詳解:(1)證明:∵四邊形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH與△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直線EG經過一個定點,這個定點為正方形的中心(AC、BD的交點);理由如下:連接AC、EG,交點為O;如圖所示:∵四邊形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O為AC的中點,∵正方形的對角線互相平分,∴O為對角線AC、BD的交點,即O為正方形的中心.點睛:考查了正方形的性質與判定、全等三角形的判定與性質等知識;本題綜合性強,有一定難度,特別是(2)中,需要通過作輔助線證明三角形全等才能得出結果.18、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點間的距離公式計算出AB=5,則AB=OA,則可根據“HL”證明△ABC≌△AOD;(2)過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當AB∥CD時,則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據三角函數定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當AB∥CD時,則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點:相似形綜合題.19、(1)0.8;2.1;(2);(2)圖像見解析,2【解析】

(1)根據小華走了4千米后休息了一段時間和小華的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的時間,再加上1.5即為b的值;(2)先求出電瓶車的速度,再根據路程=兩地間距-速度×時間即可得出答案;(2)結合的圖象即可畫出的圖象,觀察圖象即可得出答案.【詳解】解:(1),故答案為:0.8;2.1.(2)根據題意得:電瓶車的速度為∴.(2)畫出函數圖象,如圖所示.觀察函數圖象,可知:小華在休息后前往乙地的途中,共有2趟電瓶車駛過.故答案為:2.【點睛】本題主要考查一次函數的應用,能夠從圖象上獲取有效信息是解題的關鍵.20、(1)證明見解析(2)18°【解析】

(1)根據HL證明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性質及直角三角形兩銳角互余的性質求解即可.【詳解】(1)證明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=36°,∵∠C=90°,∴∠BAC=54°,∴∠CAO=∠CAB﹣∠BAD=18°.【點睛】本題考查了全等三角形的判定與性質,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.21、11米【解析】

過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,根據相似三角形的性質即可得到結論.【詳解】解:過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗桿MN的高度約為11米.【點睛】本題考查了相似三角形的應用,正確的作出輔助線是解題的關鍵.22、有觸礁危險,理由見解析.【解析】試題分析:過點P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根據三角函數AD,BD就可以用PD表示出來,根據AB=12海里,就得到一個關于PD的方程,求得PD.從而可以判斷如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險.試題解析:有觸礁危險.理由:過點P作PD⊥AC于D.設PD為x,在Rt△PBD中,∠PBD=90°-45°=45°.∴BD=PD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論