湖北省鄂州市梁子湖區(qū)吳都中學2023-2024學年中考數學最后沖刺濃縮卷含解析_第1頁
湖北省鄂州市梁子湖區(qū)吳都中學2023-2024學年中考數學最后沖刺濃縮卷含解析_第2頁
湖北省鄂州市梁子湖區(qū)吳都中學2023-2024學年中考數學最后沖刺濃縮卷含解析_第3頁
湖北省鄂州市梁子湖區(qū)吳都中學2023-2024學年中考數學最后沖刺濃縮卷含解析_第4頁
湖北省鄂州市梁子湖區(qū)吳都中學2023-2024學年中考數學最后沖刺濃縮卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省鄂州市梁子湖區(qū)吳都中學2023-2024學年中考數學最后沖刺濃縮精華卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或2.某區(qū)10名學生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學生所得分數的平均數和眾數分別是()人數3421分數80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和803.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.54.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)5.在直角坐標系中,已知點P(3,4),現將點P作如下變換:①將點P先向左平移4個單位,再向下平移3個單位得到點P1;②作點P關于y軸的對稱點P2;③將點P繞原點O按逆時針方向旋轉90°得到點P3,則P1,P2,P3的坐標分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)6.如圖,△ABC是⊙O的內接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°7.如圖,一次函數y=x﹣1的圖象與反比例函數的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標為()A.(0,1) B.(0,2) C. D.(0,3)8.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.89.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數y=kx在第一象限圖象經過點A,與BC交于點F.S△AOF=A.15 B.13 C.12 D.510.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=211.已知點P(a,m),Q(b,n)都在反比例函數y=的圖象上,且a<0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n12.下列運算正確的是()A.x2?x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:4ax2﹣4ay2=_____.14.舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰(zhàn)失敗,則該項成績?yōu)?,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績如下(單位:公斤):如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.15.某書店把一本新書按標價的九折出售,仍可獲利20%,若該書的進價為21元,則標價為___________元.16.如圖,點A的坐標為(3,),點B的坐標為(6,0),將△AOB繞點B按順時針方向旋轉一定的角度后得到△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為_____.17.在平面直角坐標系中,點A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標為_______.

.18.一個圓錐的母線長15CM.高為9CM.則側面展開圖的圓心角________。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了貫徹落實市委政府提出的“精準扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運往A、B兩村的運費如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現安排其中10輛貨車前往A村,其余貨車前往B村,設前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數解析式.(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調配方案,并求出最少費用.20.(6分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數按一、二、三、四班分別記為A1,A2,A3,A4,現對A1,A2,A3,A4統計后,制成如圖所示的統計圖.求七年級已“建檔立卡”的貧困家庭的學生總人數;將條形統計圖補充完整,并求出A1所在扇形的圓心角的度數;現從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.21.(6分)如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數據:sin36°52′≈0.60,tan36°52′≈0.75)22.(8分)某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?(2)如果購買B花木的數量不少于A花木的數量,請設計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.23.(8分)一名在校大學生利用“互聯網+”自主創(chuàng)業(yè),銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現,該產品每天的銷售量(件與銷售價(元/件)之間的函數關系如圖所示.求與之間的函數關系式,并寫出自變量的取值范圍;求每天的銷售利潤W(元與銷售價(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?24.(10分)在下列的網格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;(3)根據(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.25.(10分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.(1)由定義知,取AB中點N,連結MN,MN與AB的關系是_____.(2)拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.26.(12分)某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優(yōu)秀、良好、及格、不及格四個等級,統計員在將測試數據繪制成圖表時發(fā)現,優(yōu)秀漏統計4人,良好漏統計6人,于是及時更正,從而形成如圖圖表,請按正確數據解答下列各題:學生體能測試成績各等次人數統計表體能等級調整前人數調整后人數優(yōu)秀8良好16及格12不及格4合計40(1)填寫統計表;(2)根據調整后數據,補全條形統計圖;(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數.27.(12分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據調查結果繪制了如下的兩個不完整統計圖.請根據圖中所提供的信息,完成下列問題:(1)本次被調查的學生的人數為;(2)補全條形統計圖(3)扇形統計圖中,類所在扇形的圓心角的度數為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據=5,=7,得,因為,則,則=5-7=-2或-5-7=-12.故選D.2、B【解析】

根據眾數及平均數的定義,即可得出答案.【詳解】解:這組數據中85出現的次數最多,故眾數是85;平均數=(80×3+85×4+90×2+95×1)=85.5.故選:B.【點睛】本題考查了眾數及平均數的知識,掌握各部分的概念是解題關鍵.3、B【解析】

連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點睛】本題主要考查勾股定理,掌握勾股定理的內容是解題的關鍵.4、D【解析】

先根據反射角等于入射角先找出前幾個點,直至出現規(guī)律,然后再根據規(guī)律進行求解.【詳解】由分析可得p(0,1)、、、、、、等,故該坐標的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標為(4,1).【點睛】本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關鍵.5、D【解析】

把點P的橫坐標減4,縱坐標減3可得P1的坐標;讓點P的縱坐標不變,橫坐標為原料坐標的相反數可得P2的坐標;讓點P的縱坐標的相反數為P3的橫坐標,橫坐標為P3的縱坐標即可.【詳解】∵點P(3,4),將點P先向左平移4個單位,再向下平移3個單位得到點P1,∴P1的坐標為(﹣1,1).∵點P關于y軸的對稱點是P2,∴P2(﹣3,4).∵將點P繞原點O按逆時針方向旋轉90°得到點P3,∴P3(﹣4,3).故選D.【點睛】本題考查了坐標與圖形的變化;用到的知識點為:左右平移只改變點的橫坐標,左減右加,上下平移只改變點的縱坐標,上加下減;兩點關于y軸對稱,縱坐標不變,橫坐標互為相反數;(a,b)繞原點O按逆時針方向旋轉90°得到的點的坐標為(﹣b,a).6、B【解析】

由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關鍵.7、B【解析】

根據方程組求出點A坐標,設C(0,m),根據AC=BC,列出方程即可解決問題.【詳解】由,解得或,

∴A(2,1),B(1,0),

設C(0,m),

∵BC=AC,

∴AC2=BC2,

即4+(m-1)2=1+m2,

∴m=2,

故答案為(0,2).【點睛】本題考查了反比例函數與一次函數的交點坐標問題、勾股定理、方程組等知識,解題的關鍵是會利用方程組確定兩個函數的交點坐標,學會用方程的思想思考問題.8、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考??碱}型.9、A【解析】

過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,再根據四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出a的值,進而依據點A的坐標得到k的值.【詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點A的坐標為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點A在反比例函數y=kx∴k=52故選A.【解答】解:【點評】本題考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是利用S△AOF=12S菱形OBCA10、C【解析】試題解析:x(x+1)=0,

?x=0或x+1=0,

解得x1=0,x1=-1.

故選C.11、D【解析】

根據反比例函數的性質,可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數的性質,利用反比例函數的性質:k<1時,圖象位于二四象限是解題關鍵.12、C【解析】

根據同底數冪的法則、合并同類項的法則、積的乘方法則、完全平方公式逐一進行計算即可.【詳解】A、x2?x3=x5,故A選項錯誤;B、x2+x2=2x2,故B選項錯誤;C、(﹣2x)2=4x2,故C選項正確;D、(a+b)2=a2+2ab+b2,故D選項錯誤,故選C.【點睛】本題考查了同底數冪的乘法、合并同類項、積的乘方以及完全平方公式,熟練掌握各運算的運算法則是解題的關鍵二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4a(x﹣y)(x+y)【解析】

首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.14、乙乙的比賽成績比較穩(wěn)定.【解析】

觀察表格中的數據可知:甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定,據此可得結論.【詳解】觀察表格中的數據可得,甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定;所以要選派一名選手參加國際比賽,應該選擇乙,理由是乙的比賽成績比較穩(wěn)定.故答案為乙,乙的比賽成績比較穩(wěn)定.【點睛】本題主要考查了方差,方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.15、28【解析】設標價為x元,那么0.9x-21=21×20%,x=28.16、(,)【解析】

作AC⊥OB、O′D⊥A′B,由點A、B坐標得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉性質知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長即可.【詳解】如圖,過點A作AC⊥OB于C,過點O′作O′D⊥A′B于D,

∵A(3,),

∴OC=3,AC=,

∵OB=6,

∴BC=OC=3,

則tan∠ABC==,

由旋轉可知,BO′=BO=6,∠A′BO′=∠ABO,

∴==,

設O′D=x,BD=3x,

由O′D2+BD2=O′B2可得(x)2+(3x)2=62,

解得:x=或x=?(舍),

則BD=3x=,O′D=x=,

∴OD=OB+BD=6+=,

∴點O′的坐標為(,).【點睛】本題考查的是圖形的旋轉,熟練掌握勾股定理和三角函數是解題的關鍵.17、A3()【解析】

設直線y=與x軸的交點為G,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標.【詳解】設直線y=與x軸的交點為G,

令y=0可解得x=-4,

∴G點坐標為(-4,0),

∴OG=4,

如圖1,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,

∵△A1B1O為等腰直角三角形,

∴A1D=OD,

又∵點A1在直線y=x+上,

∴=,即=,解得A1D=1=()0,

∴A1(1,1),OB1=2,

同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,

∴A2(,),OB2=5,

同理可求得A3F==()2,則OF=5+=,

∴A3(,);故答案為(,)【點睛】本題主要考查等腰三角形的性質和直線上點的坐標特點,根據題意找到點的坐標的變化規(guī)律是解題的關鍵,注意觀察數據的變化.18、288°【解析】

母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設側面屬開圖扇形的國心角度數為n,則由得n=288°故答案為:288°.【點睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)大貨車用8輛,小貨車用7輛;(2)y=100x+1.(3)見解析.【解析】

(1)設大貨車用x輛,小貨車用y輛,根據大、小兩種貨車共15輛,運輸152箱魚苗,列方程組求解;(2)設前往A村的大貨車為x輛,則前往B村的大貨車為(8-x)輛,前往A村的小貨車為(10-x)輛,前往B村的小貨車為[7-(10-x)]輛,根據表格所給運費,求出y與x的函數關系式;(3)結合已知條件,求x的取值范圍,由(2)的函數關系式求使總運費最少的貨車調配方案.【詳解】(1)設大貨車用x輛,小貨車用y輛,根據題意得:解得:.∴大貨車用8輛,小貨車用7輛.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x為整數).(3)由題意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且為整數,∵y=100x+1,k=100>0,y隨x的增大而增大,∴當x=5時,y最小,最小值為y=100×5+1=9900(元).答:使總運費最少的調配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運費為9900元.20、(1)15人;(2)補圖見解析.(3).【解析】

(1)根據三班有6人,占的百分比是40%,用6除以所占的百分比即可得總人數;(2)用總人數減去一、三、四班的人數得到二班的人數即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數;(3)根據題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總人數:6÷40%=15人;(2)A2的人數為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數為:×360°=48°;(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=.【點睛】本題考查了條形圖與扇形統計圖,概率等知識,準確識圖,從圖中發(fā)現有用的信息,正確根據已知畫出樹狀圖得出所有可能是解題關鍵.21、52【解析】

根據樓高和山高可求出EF,繼而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根據CF=BD可建立方程,解出即可.【詳解】如圖,過點C作CF⊥AB于點F.設塔高AE=x,由題意得,EF=BE?CD=56?27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,則,在Rt△ABD中,∠ADB=45°,AB=x+56,則BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:該鐵塔的高AE為52米.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是構造直角三角形,注意利用方程思想求解,難度一般.22、(1)購買A種花木40棵,B種花木60棵;(2)當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.【解析】

(1)設購買A種花木x棵,B種花木y棵,根據“A,B兩種花木共100棵、購進A,B兩種花木剛好用去8000元”列方程組求解可得;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據“B花木的數量不少于A花木的數量”求得a的范圍,再設購買總費用為W,列出W關于a的解析式,利用一次函數的性質求解可得.【詳解】解析:(1)設購買A種花木x棵,B種花木y棵,根據題意,得:,解得:,答:購買A種花木40棵,B種花木60棵;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據題意,得:100﹣a≥a,解得:a≤50,設購買總費用為W,則W=50a+100(100﹣a)=﹣50a+10000,∵W隨a的增大而減小,∴當a=50時,W取得最小值,最小值為7500元,答:當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.考點:一元一次不等式的應用;二元一次方程組的應用.23、(1)(2),,144元【解析】

(1)利用待定系數法求解可得關于的函數解析式;(2)根據“總利潤每件的利潤銷售量”可得函數解析式,將其配方成頂點式,利用二次函數的性質進一步求解可得.【詳解】(1)設與的函數解析式為,將、代入,得:,解得:,所以與的函數解析式為;(2)根據題意知,,,當時,隨的增大而增大,,當時,取得最大值,最大值為144,答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】本題考查了二次函數的應用,解題的關鍵是熟練掌握待定系數法求函數解析式及根據相等關系列出二次函數解析式及二次函數的性質.24、(1)作圖見解析;(2)如圖所示,點A的坐標為(0,1),點C的坐標為(-3,1);(3)如圖所示,點B2的坐標為(3,-5),點C2的坐標為(3,-1).【解析】

(1)分別作出點B個點C旋轉后的點,然后順次連接可以得到;(2)根據點B的坐標畫出平面直角坐標系;(3)分別作出點A、點B、點C關于原點對稱的點,然后順次連接可以得到.【詳解】(1)△A如圖所示;(2)如圖所示,A(0,1),C(﹣3,1);(3)△如圖所示,(3,﹣5),(3,﹣1).25、(1)MN與AB的關系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據題意得出拋物線必過(2,0),進而代入求出答案;②根據y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解】(1)MN與AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論