錦州市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
錦州市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
錦州市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
錦州市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
錦州市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

錦州市重點(diǎn)中學(xué)2024屆中考數(shù)學(xué)考試模擬沖刺卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.已知平面內(nèi)不同的兩點(diǎn)A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣52.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數(shù)為()A.105° B.110° C.115° D.120°4.已知一個(gè)多邊形的每一個(gè)外角都相等,一個(gè)內(nèi)角與一個(gè)外角的度數(shù)之比是3:1,這個(gè)多邊形的邊數(shù)是A.8 B.9 C.10 D.125.如圖,在正方形OABC中,點(diǎn)A的坐標(biāo)是(﹣3,1),點(diǎn)B的縱坐標(biāo)是4,則B,C兩點(diǎn)的坐標(biāo)分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)6.如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點(diǎn),則K的值不可能是()A.-5 B.-2 C.3 D.57.下列各數(shù)中,相反數(shù)等于本身的數(shù)是()A.–1 B.0 C.1 D.28.如圖是測量一物體體積的過程:步驟一:將180mL的水裝進(jìn)一個(gè)容量為300mL的杯子中;步驟二:將三個(gè)相同的玻璃球放入水中,結(jié)果水沒有滿;步驟三:再將一個(gè)同樣的玻璃球放入水中,結(jié)果水滿溢出.根據(jù)以上過程,推測一個(gè)玻璃球的體積在下列哪一范圍內(nèi)?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下9.如圖,有一些點(diǎn)組成形如四邊形的圖案,每條“邊”(包括頂點(diǎn))有n(n>1)個(gè)點(diǎn).當(dāng)n=2018時(shí),這個(gè)圖形總的點(diǎn)數(shù)S為()A.8064 B.8067 C.8068 D.807210.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,線段AB兩端點(diǎn)坐標(biāo)分別為A(﹣1,5)、B(3,3),線段CD兩端點(diǎn)坐標(biāo)分別為C(5,3)、D(3,﹣1)數(shù)學(xué)課外興趣小組研究這兩線段發(fā)現(xiàn):其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可得到另一條線段,請寫出旋轉(zhuǎn)中心的坐標(biāo)________.12.如圖,已知△ABC和△ADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.13.因式分解:_________________.14.釣魚島是中國的固有領(lǐng)土,位于中國東海,面積約4400000平方米,數(shù)據(jù)4400000用科學(xué)記數(shù)法表示為______.15.一組數(shù)據(jù)10,10,9,8,x的平均數(shù)是9,則這列數(shù)據(jù)的極差是_____.16.已知一個(gè)斜坡的坡度,那么該斜坡的坡角的度數(shù)是______.17.化簡__________.三、解答題(共7小題,滿分69分)18.(10分)已知:正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)至正方形,連接.如圖,求證:;如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個(gè)角,使寫出的每一個(gè)角的大小都等于旋轉(zhuǎn)角.19.(5分)如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點(diǎn),G是AD上一點(diǎn),如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.20.(8分)如圖1,經(jīng)過原點(diǎn)O的拋物線y=ax2+bx(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).(1)求這條拋物線的表達(dá)式;(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.21.(10分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長.22.(10分)如圖,某人在山坡坡腳C處測得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:1.(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)(測傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.4°≈2)23.(12分)某校運(yùn)動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.(1)求A、B兩種獎品的單價(jià)各是多少元?(2)學(xué)校計(jì)劃購買A、B兩種獎品共100件,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買費(fèi)用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.請您確定當(dāng)購買A種獎品多少件時(shí),費(fèi)用W的值最少.24.(14分)計(jì)算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】分析:根據(jù)點(diǎn)A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點(diǎn)A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點(diǎn)睛:考查點(diǎn)的坐標(biāo)的相關(guān)知識;用到的知識點(diǎn)為:到x軸和y軸的距離相等的點(diǎn)的橫縱坐標(biāo)相等或互為相反數(shù).2、D【解析】

首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉(zhuǎn)換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質(zhì)進(jìn)行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);過點(diǎn)分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對角相等),故正確;,(平行四邊形的對邊相等),故正確;如果四邊形是矩形時(shí),該等式成立.故不一定正確.故選:.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì).注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.3、C【解析】

如圖,首先證明∠AMO=∠2,然后運(yùn)用對頂角的性質(zhì)求出∠ANM=55°;借助三角形外角的性質(zhì)求出∠AMO即可解決問題.【詳解】如圖,對圖形進(jìn)行點(diǎn)標(biāo)注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì),熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.4、A【解析】試題分析:設(shè)這個(gè)多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補(bǔ)可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設(shè)這個(gè)多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個(gè)多邊形的邊數(shù):360°÷45°=8,故選A.考點(diǎn):多邊形內(nèi)角與外角.5、A【解析】

作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點(diǎn)A的坐標(biāo)是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點(diǎn)A的坐標(biāo)是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.6、B【解析】

當(dāng)直線y=kx-2與線段AB的交點(diǎn)為A點(diǎn)時(shí),把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≤-3時(shí)直線y=kx-2與線段AB有交點(diǎn);當(dāng)直線y=kx-2與線段AB的交點(diǎn)為B點(diǎn)時(shí),把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≥1時(shí)直線y=kx-2與線段AB有交點(diǎn),從而能得到正確選項(xiàng).【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過第二、四象限時(shí),k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過第一、三象限時(shí),k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點(diǎn),則k的值不可能是-2.故選B.【點(diǎn)睛】本題考查了一次函數(shù)y=kx+b(k≠0)的性質(zhì):當(dāng)k>0時(shí),圖象必過第一、三象限,k越大直線越靠近y軸;當(dāng)k<0時(shí),圖象必過第二、四象限,k越小直線越靠近y軸.7、B【解析】

根據(jù)相反數(shù)的意義,只有符號不同的數(shù)為相反數(shù).【詳解】解:相反數(shù)等于本身的數(shù)是1.故選B.【點(diǎn)睛】本題考查了相反數(shù)的意義.注意掌握只有符號不同的數(shù)為相反數(shù),1的相反數(shù)是1.8、C【解析】分析:本題可設(shè)玻璃球的體積為x,再根據(jù)題意列出不等式組求得解集得出答案即可.詳解:設(shè)玻璃球的體積為x,則有解得30<x<1.故一顆玻璃球的體積在30cm3以上,1cm3以下.故選C.點(diǎn)睛:此題考查一元一次不等式組的運(yùn)用,解此類題目常常要根據(jù)題意列出不等式組,再化簡計(jì)算得出x的取值范圍.9、C【解析】分析:本題重點(diǎn)注意各個(gè)頂點(diǎn)同時(shí)在兩條邊上,計(jì)算點(diǎn)的個(gè)數(shù)時(shí),不要把頂點(diǎn)重復(fù)計(jì)算了.詳解:此題中要計(jì)算點(diǎn)的個(gè)數(shù),可以類似周長的計(jì)算方法進(jìn)行,但應(yīng)注意各個(gè)頂點(diǎn)重復(fù)了一次.如當(dāng)n=2時(shí),共有S2=4×2﹣4=4;當(dāng)n=3時(shí),共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當(dāng)n=2018時(shí),S2018=4×2018﹣4=1.故選C.點(diǎn)睛:本題考查了圖形的變化類問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.10、D【解析】

根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關(guān)鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.二、填空題(共7小題,每小題3分,滿分21分)11、或【解析】

分點(diǎn)A的對應(yīng)點(diǎn)為C或D兩種情況考慮:當(dāng)點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)C時(shí),連接AC、BD,分別作線段AC、BD的垂直平分線交于點(diǎn)E,點(diǎn)E即為旋轉(zhuǎn)中心;當(dāng)點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)D時(shí),連接AD、BC,分別作線段AD、BC的垂直平分線交于點(diǎn)M,點(diǎn)M即為旋轉(zhuǎn)中心此題得解.【詳解】當(dāng)點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)C時(shí),連接AC、BD,分別作線段AC、BD的垂直平分線交于點(diǎn)E,如圖1所示:點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;當(dāng)點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)D時(shí),連接AD、BC,分別作線段AD、BC的垂直平分線交于點(diǎn)M,如圖2所示:點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.綜上所述:這個(gè)旋轉(zhuǎn)中心的坐標(biāo)為或.故答案為或.【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化中的旋轉(zhuǎn),根據(jù)給定點(diǎn)的坐標(biāo)找出旋轉(zhuǎn)中心的坐標(biāo)是解題的關(guān)鍵.12、1【解析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當(dāng)OE⊥EC時(shí),OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點(diǎn)O是AC的中點(diǎn),∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當(dāng)OE⊥EC時(shí),OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.13、【解析】

提公因式法和應(yīng)用公式法因式分解.【詳解】解:.故答案為:【點(diǎn)睛】本題考查因式分解,要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.14、

【解析】試題分析:將4400000用科學(xué)記數(shù)法表示為:4.4×1.故答案為4.4×1.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).15、1【解析】

先根據(jù)平均數(shù)求出x,再根據(jù)極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數(shù)據(jù)的極差是10-8=1,故答案為1.【點(diǎn)睛】本題主要考查平均數(shù)和極差,熟練掌握平均數(shù)的計(jì)算得出x的值是解題的關(guān)鍵.16、【解析】

坡度=坡角的正切值,據(jù)此直接解答.【詳解】解:∵,∴坡角=30°.【點(diǎn)睛】此題主要考查學(xué)生對坡度及坡角的理解及掌握.17、【解析】

根據(jù)分式的運(yùn)算法則先算括號里面,再作乘法亦可利用乘法對加法的分配律求解.【詳解】解:法一、=(-)==2-m.

故答案為:2-m.

法二、原式===1-m+1

=2-m.

故答案為:2-m.【點(diǎn)睛】本題考查分式的加減和乘法,解決本題的關(guān)鍵是熟練運(yùn)用運(yùn)算法則或運(yùn)算律.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2).【解析】

(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEAC?ΔDAF,根據(jù)全等三角形的性質(zhì)即可得CE=DF;(2)由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【詳解】(1)證明:連接,∵正方形旋轉(zhuǎn)至正方形∴,∴∴在和中,,∴∴(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【點(diǎn)睛】本題考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)及全等三角形的判定與性質(zhì),證明ΔEAC?ΔDAF是解決問題的關(guān)鍵.19、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據(jù)正方形的性質(zhì),可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點(diǎn)F.則四邊形ABCF是正方形,設(shè)DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;試題解析:(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖2,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點(diǎn)F.則四邊形ABCF是正方形.AE=AB-BE=12-4=8,設(shè)DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,則82+(12-x)2=(4+x)2,解得:x=1.則DE=4+1=2.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)以及正方形的性質(zhì),解決本題的關(guān)鍵是注意每個(gè)題目之間的關(guān)系,正確作出輔助線.20、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】

(1)由直線解析式可求得B點(diǎn)坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;(2)過C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作BF⊥CD于點(diǎn)F,可設(shè)出C點(diǎn)坐標(biāo),利用C點(diǎn)坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點(diǎn)坐標(biāo)的方程,可求得C點(diǎn)坐標(biāo);(3)設(shè)MB交y軸于點(diǎn)N,則可證得△ABO≌△NBO,可求得N點(diǎn)坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點(diǎn)坐標(biāo),過M作MG⊥y軸于點(diǎn)G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),過P作PH⊥x軸于點(diǎn)H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在第三象限時(shí),同理可求得P點(diǎn)坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作BF⊥CD于點(diǎn)F,∵點(diǎn)C是拋物線上第四象限的點(diǎn),∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設(shè)MB交y軸于點(diǎn)N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點(diǎn)坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當(dāng)點(diǎn)P在第一象限時(shí),如圖3,過M作MG⊥y軸于點(diǎn)G,過P作PH⊥x軸于點(diǎn)H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(jìn)(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當(dāng)點(diǎn)P在第三象限時(shí),如圖4,過M作MG⊥y軸于點(diǎn)G,過P作PH⊥y軸于點(diǎn)H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點(diǎn)P,其坐標(biāo)為(,)或(﹣,).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用C點(diǎn)坐標(biāo)表示出△BOC的面積是解題的關(guān)鍵,在(3)中確定出點(diǎn)P的位置,構(gòu)造相似三角形是解題的關(guān)鍵,注意分兩種情況.21、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.22、(1)此人所在P的鉛直高度約為14.3米;(2)從P到點(diǎn)B的路程約為17.1米【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設(shè)PF=5x,在Rt△ABC中求出AB,用含x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論