湖北省武漢武昌區(qū)四校聯考2025屆數學九上期末檢測試題含解析_第1頁
湖北省武漢武昌區(qū)四校聯考2025屆數學九上期末檢測試題含解析_第2頁
湖北省武漢武昌區(qū)四校聯考2025屆數學九上期末檢測試題含解析_第3頁
湖北省武漢武昌區(qū)四校聯考2025屆數學九上期末檢測試題含解析_第4頁
湖北省武漢武昌區(qū)四校聯考2025屆數學九上期末檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省武漢武昌區(qū)四校聯考2025屆數學九上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.若點A(﹣1,0)為拋物線y=﹣3(x﹣1)2+c圖象上一點,則當y≥0時,x的取值范圍是()A.﹣1<x<3 B.x<﹣1或x>3 C.﹣1≤x≤3 D.x≤﹣1或x≥32.如圖,將直尺與含30°角的三角尺放在一起,若∠1=25°,則∠2的度數是()A.30° B.45° C.55° D.60°3.商場舉行摸獎促銷活動,對于“抽到一等獎的概率為0.01”.下列說法正確的是()A.抽101次也可能沒有抽到一等獎B.抽100次獎必有一次抽到一等獎C.抽一次不可能抽到一等獎D.抽了99次如果沒有抽到一等獎,那么再抽一次肯定抽到一等獎4.如圖,在菱形ABCD中,于E,,,則菱形ABCD的周長是A.5 B.10 C.8 D.125.某個幾何體的三視圖如圖所示,該幾何體是()A. B. C. D.6.如圖,⊙C過原點,與x軸、y軸分別交于A、D兩點.已知∠OBA=30°,點D的坐標為(0,2),則⊙C半徑是()A. B. C. D.27.若點A(1,y1)、B(2,y2)都在反比例函數的圖象上,則y1、y2的大小關系為A.y1<y2 B.y1≤y2 C.y1>y2 D.y1≥y28.若∽,相似比為,則與的周長比為()A. B. C. D.9.已知△ABC∽△A1B1C1,若△ABC與△A1B1C1的相似比為3:2,則△ABC與△A1B1C1的周長之比是()A.2:3 B.9:4 C.3:2 D.4:910.二次函數y=(x+2)2-3的頂點坐標是()A.(﹣2,3) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)二、填空題(每小題3分,共24分)11.當時,函數的最大值是8則=_________.12.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___13.如圖,已知梯形ABCO的底邊AO在軸上,,AB⊥AO,過點C的雙曲線交OB于D,且,若△OBC的面積等于3,則k的值為__________.14.已知△ABC與△DEF相似,且△ABC與△DEF的相似比為2:3,若△DEF的面積為36,則△ABC的面積等于________.15.方程的一次項系數是________.16.如圖所示,在△ABC中,BC=6,E、F分別是AB、AC的中點,動點P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當CQ=CE時,EP+BP=.17.寫出一個二次函數關系式,使其圖象開口向上_______.18.已知x=-1是一元二次方程x2+mx+1=0的一個根,那么m的值是_________.三、解答題(共66分)19.(10分)有兩個口袋,口袋中裝有兩個分別標有數字2,3的小球,口袋中裝有三個分別標有數字的小球(每個小球質量、大小、材質均相同).小明先從口袋中隨機取出一個小球,用表示所取球上的數字;再從口袋中順次取出兩個小球,用表示所取兩個小球上的數字之和.(1)用樹狀圖法或列表法表示小明所取出的三個小球的所有可能結果;(2)求的值是整數的概率.20.(6分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.(1)求證:BE=EC(2)填空:①若∠B=30°,AC=2,則DE=______;②當∠B=______度時,以O,D,E,C為頂點的四邊形是正方形.21.(6分)已知,如圖,在平面直角坐標系中,直線與軸交于點A,與軸交于點B,拋物線經過A、B兩點,與軸的另一個交點為C.(1)直接寫出點A和點B的坐標;(2)求拋物線的函數解析式;(3)D為直線AB下方拋物線上一動點;①連接DO交AB于點E,若DE:OE=3:4,求點D的坐標;②是否存在點D,使得∠DBA的度數恰好是∠BAC度數2倍,如果存在,求點D的坐標,如果不存在,說明理由.22.(8分)已知關于的方程.(1)當取何值時,方程有兩個不相等的實數根;(2)若、為方程的兩個不等實數根,且滿足,求的值.23.(8分)如圖,在△ABC中,∠C=60°,AB=4.以AB為直徑畫⊙O,交邊AC于點D.AD的長為,求證:BC是⊙O的切線.24.(8分)如圖所示,某數學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結果保留根號).25.(10分)如圖,在平面直角坐標系中,已知拋物線與軸交于、兩點,與軸交于點,其頂點為點,點的坐標為(0,-1),該拋物線與交于另一點,連接.(1)求該拋物線的解析式,并用配方法把解析式化為的形式;(2)若點在上,連接,求的面積;(3)一動點從點出發(fā),以每秒1個單位的速度沿平行于軸方向向上運動,連接,,設運動時間為秒(>0),在點的運動過程中,當為何值時,?26.(10分)如圖1,AB為⊙O的直徑,點C為⊙O上一點,CD平分∠ACB交⊙O于點D,交AB于點E.(1)求證:△ABD為等腰直角三角形;(2)如圖2,ED繞點D順時針旋轉90°,得到DE′,連接BE′,證明:BE′為⊙O的切線;(3)如圖3,點F為弧BD的中點,連接AF,交BD于點G,若DF=1,求AG的長.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據點A(﹣1,0)為拋物線y=﹣3(x﹣1)2+c圖象上一點,可以求得c的值,從而可以得到該拋物線的解析式,然后令y=0,求得拋物線與x軸的交點,然后根據二次函數的性質即可得到當y≥0時,x的取值范圍.【詳解】解:∵點A(﹣1,0)為拋物線y=﹣3(x﹣1)2+c圖象上一點,∴0=﹣3(﹣1﹣1)2+c,得c=12,∴y=﹣3(x﹣1)2+12,當y=0時,﹣3(x﹣1)2+12=0,解得:x1=﹣1,x2=3,又∵-3<0,拋物線開口向下,∴當y≥0時,x的取值范圍是﹣1≤x≤3,故選:C.【點睛】本題考查拋物線與x軸的交點、二次函數的性質、二次函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用二次函數的性質解答.2、C【分析】通過三角形外角的性質得出∠BEF=∠1+∠F,再利用平行線的性質∠2=∠BEF即可.【詳解】∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故選:C.【點睛】本題主要考查平行線的性質及三角形外角的性質,掌握三角形外角的性質及平行線的性質是解題的關鍵.3、A【分析】根據概率是頻率(多個)的波動穩(wěn)定值,是對事件發(fā)生可能性大小的量的表現進行解答即可.【詳解】解:根據概率的意義可得“抽到一等獎的概率為為0.01”就是說抽100次可能抽到一等獎,也可能沒有抽到一等獎,抽一次也可能抽到一等獎,抽101次也可能沒有抽到一等獎.故選:A.【點睛】本題考查概率的意義,概率是對事件發(fā)生可能性大小的量的表現.4、C【解析】連接AC,根據線段垂直平分線的性質可得AB=AC=2,然后利用周長公式進行計算即可得答案.【詳解】如圖連接AC,,,,菱形ABCD的周長,故選C.【點睛】本題考查了菱形的性質、線段的垂直平分線的性質等知識,熟練掌握的靈活應用相關知識是解題的關鍵.5、D【解析】根據幾何體的三視圖判斷即可.【詳解】由三視圖可知:該幾何體為圓錐.故選D.【點睛】考查了由三視圖判斷幾何體的知識,解題的關鍵是具有較強的空間想象能力,難度不大.6、B【解析】連接AD∵∠AOD=90°,∴AD是圓的直徑.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,則圓的半徑是.故選B.點睛:連接AD.根據90°的圓周角所對的弦是直徑,得AD是直徑,根據等弧所對的圓周角相等,得∠D=∠B=30°,運用解直角三角形的知識即可求解.7、C【解析】根據反比例函數圖象的增減性進行判斷:根據反比例函數的性質:當時,圖象分別位于第一、三象限,在每個象限內,y隨x的增大而減?。划敃r,圖象分別位于第二、四象限,在每個象限內,y隨x的增大而增大.∵反比例函數的解析式中的,∴點A(1,y1)、B(1,y1)都位于第四象限.又∵1<1,∴y1>y1.故選C.8、B【分析】根據相似三角形的性質:周長之比等于相似比解答即可.【詳解】解:∵∽,相似比為,∴與的周長比為.故選:B.【點睛】本題考查的是相似三角形的性質,屬于應知應會題型,熟練掌握相似三角形的性質是解題關鍵.9、C【分析】直接利用相似三角形的性質求解.【詳解】解:∵△ABC與△A1B1C1的相似比為3:1,∴△ABC與△A1B1C1的周長之比3:1.故選:C.【點睛】本題考查了相似三角形的性質:相似三角形的對應角相等,對應邊的比相等;相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比;相似三角形的面積的比等于相似比的平方.10、C【分析】根據二次函數的性質直接求解.【詳解】解:二次函數y=(x+2)2-3的頂點坐標是(-2,-3).

故選:C.【點睛】本題考查了二次函數的性質:二次函數y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0,拋物線開口向上;拋物線的頂點式為y=a(x-)2+,對稱軸為直線x=-,頂點坐標為(-,);拋物線與y軸的交點坐標為(0,c).二、填空題(每小題3分,共24分)11、或【分析】先求出二次函數的對稱軸,根據開口方向分類討論決定取值,列出關于a的方程,即可求解;【詳解】解:函數,則對稱軸為x=2,對稱軸在范圍內,當a<0時,開口向下,有最大值,最大值在x=2處取得,即=8,解得a=;當a>0時,開口向上,最大值在x=-3處取得,即=8,解得a=;故答案為:或;【點睛】本題主要考查了二次函數的最值,掌握二次函數的性質是解題的關鍵.12、【分析】由DE:EC=3:1,可得DF:FB=3:4,根據在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE

∵DE:EC=3:1

∴設DE=3k,EC=k,則CD=4k

∵ABCD是平行四邊形

∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4

∵DE:EC=3:1

∴S△BDE:S△BEC=3:1

設S△BDE=3a,S△BEC=a

則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19

故答案為:.【點睛】本題考查了平行線分線段成比例,平行四邊形的性質,關鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.13、【分析】設C(x,y),BC=a.過D點作DE⊥OA于E點.根據DE∥AB得比例線段表示點D坐標;根據△OBC的面積等于3得關系式,列方程組求解.【詳解】設C(x,y),BC=a.則AB=y,OA=x+a.過D點作DE⊥OA于E點.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比為OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D點在反比例函數的圖象上,且D((x+a),y),∴y?(x+a)=k,即xy+ya=9k,∵C點在反比例函數的圖象上,則xy=k,∴ya=8k.∵△OBC的面積等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案為:.14、16【分析】利用相似三角形面積比等于相似比的平方求解即可.【詳解】解:∵ABC與DEF相似,且ΔABC與ΔDEF的相似比為2:3,∴,∵ΔDEF的面積為36,∴∴ΔABC的面積等于16,故答案為16.【點睛】本題考查了相似三角形的性質,熟記相似三角形的面積比等于相似比的平方是解決本題的關鍵.15、-3【解析】對于一元二次方程的一般形式:,其中叫做二次項,叫做一次項,為常數項,進而直接得出答案.【詳解】方程的一次項是,∴一次項系數是:故答案是:.【點睛】本題主要考查了一元二次方程的一般形式,正確得出一次項系數是解題關鍵.16、1.【分析】延長BQ交射線EF于M,根據三角形的中位線平行于第三邊可得EF∥BC,根據兩直線平行,內錯角相等可得∠M=∠CBM,再根據角平分線的定義可得∠PBM=∠CBM,從而得到∠M=∠PBM,根據等角對等邊可得BP=PM,求出EP+BP=EM,再根據CQ=CE求出EQ=2CQ,然后根據△MEQ和△BCQ相似,利用相似三角形對應邊成比例列式求解即可.【詳解】如圖,延長BQ交射線EF于M,∵E、F分別是AB、AC的中點,∴EF∥BC.∴∠M=∠CBM.∵BQ是∠CBP的平分線,∴∠PBM=∠CBM.∴∠M=∠PBM.∴BP=PM.∴EP+BP=EP+PM=EM.∵CQ=CE,∴EQ=2CQ.由EF∥BC得,△MEQ∽△BCQ,∴.∴EM=2BC=2×6=1,即EP+BP=1.故答案為:1.【點睛】本題考查了相似三角形的判定與性質,角平分線的定義,平行線的性質,延長BQ構造出相似三角形,求出EP+BP=EM并得到相似三角形是解題的關鍵,也是本題的難點.17、【分析】拋物線開口向上,則二次函數解析式的二次項系數為正數,據此寫二次函數解析式即可.【詳解】∵圖象開口向上,∴二次項系數大于零,∴可以是:(答案不唯一).故答案為:.【點睛】本題考察了二次函數的圖象和性質,對于二次函數y=ax2+bx+c(a,b,c為常數,a≠0),當a>0時,拋物線開口向上;當a<0時,拋物線開口向下.18、1【解析】試題分析:將x=-1代入方程可得:1-m+1=0,解得:m=1.考點:一元二次方程三、解答題(共66分)19、(1)答案見解析;(2).【分析】(1)共有12種等可能的情況,根據題意畫出樹狀圖即可;(2)根據樹狀圖列出所有可能的值,即可求出的值是整數的概率.【詳解】(1)用樹狀圖法表示小明所取出的三個小球的所有可能結果如下:共有12種等可能的情況;(2)由樹狀圖可知,所有可能的值分別為:共12種情況,且每種情況出現的可能性相同,其中的值是整數的情況有6種.的值是整數的概率.【點睛】本題考查了概率統計的問題,掌握樹狀圖的性質以及畫法是解題的關鍵.20、(1)見解析;(2)①3;②1.【分析】(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)①由含30°角的直角三角形的性質得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質即可得出DE;②由等腰三角形的性質,得到∠ODA=∠A=1°,于是∠DOC=90°然后根據有一組鄰邊相等的矩形是正方形,即可得到結論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【點睛】本題考查了圓的切線性質、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.21、(1)A(-4,0)、B(0,-2);(2);(3)①(-1,3)或(-3,-2);②(-2,-3).【分析】(1)在中由求出對應的x的值,由x=0求出對應的y的值即可求得點A、B的坐標;(2)把(1)中所求點A、B的坐標代入中列出方程組,解方程組即可求得b、c的值,從而可得二次函數的解析式;(3)①如圖,過點D作x軸的垂線交AB于點F,連接OD交AB于點E,由此易得△DFE∽OBE,這樣設點D的坐標為,點F的坐標為,結合相似三角形的性質和DE:OE=3:4,即可列出關于m的方程,解方程求得m的值即可得到點D的坐標;②在y軸的正半軸上截取OH=OB,可得△ABH是等腰三角形,由此可得∠HAB=2∠BAC,若此時∠DAB=2∠BAC=∠HAB,則BD∥AH,再求出AH的解析式可得BD的解析式,由BD的解析式和拋物線的解析式聯立構成方程組,解方程組即可求得點D的坐標.【詳解】解:(1)在中,由可得:,解得:;由可得:,∴點A的坐標為(-4,0),點B的坐標為(0,-2);(2)把點A的坐標為(-4,0),點B的坐標為(0,-2)代入得:,解得:,∴拋物線的解析式為:;(3)①過點D作x軸的垂線交AB于點F,設點D,F,連接DO交AB于點E,△DFE∽OBE,因為DE:OE=3:4,所以FD:BO=3:4,即:FD=BO=,所以,解之得:m1=-1,m2=-3,∴D的坐標為(-1,3)或(-3,-2);②在y軸的正半軸上截取OH=OB,可得△ABH是等腰三角形,∴∠BAH=2∠BAC,若∠DBA=2∠BAC,則∠DBA=∠BAH,∴AH//DB,由點A的坐標(-4,0)和點H的坐標(0,2)求得直線AH的解析式為:,∴直線DB的解析式是:,將:聯立可得方程組:,解得:,∴點D的坐標(-2,-3).【點睛】本題考查二次函數的綜合應用,解第2小題的關鍵是過點D作x軸的垂線交AB于點F,連接OD交AB于點E,從而構造出△DFE∽OBE,這樣利用相似三角形的性質和已知條件即可求得D的坐標;解第3小題的關鍵是在x軸的上方作OH=OB,連接AH,從而構造出∠BAH=2∠BAC,這樣由∠DBA=∠BAH可得AH∥BD,求出AH的解析式即可得到BD的解析式,從而將問題轉化成求BD和拋物線的交點坐標即可使問題得到解決.22、(1)當且時,方程有兩個不相等的實數根;(2)【分析】(1)由方程有兩個不相等的實數根,可得>0,繼而求得m的取值范圍;

(2)由根與系數的關系,可得和,再根據已知得到方程并解方程即可得到答案.【詳解】(1)關于的方程,,,∵方程有兩個不相等的實數根,

∴>0,

解得:,

∵二次項系數,

∴,

∴當且時,方程有兩個不相等的實數根;(2)∵為方程的兩個不等實數根,

∴,,∴,解得:,(不合題意,舍去),∴.【點睛】本題考查了根的判別式以及根與系數的關系.注意當>0時,方程有兩個不相等的兩個實數根;注意若是一元二次方程(a≠0)的兩根時,,.23、證明見解析.【分析】連接OD,根據弧長公式求出AOD的度數,再證明AB⊥BC即可;【詳解】證明:如圖,連接,是直徑且

,

.

設,的長為,

解得.

在☉O中,..

,,即又為直徑,是☉O的切線.【點睛】本題考查切線的判定,圓周角定理以及等腰三角形的性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.24、大樹的高度為(9+3)米【分析】根據矩形性質得出,再利用銳角三角函數的性質求出問題即可.【詳解】解:如圖,過點D作DG⊥BC于G,DH⊥CE于H,則四邊形DHCG為矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,設BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大樹的高度為(9+3)米.【點睛】本題考查了仰角、坡角的定義,解直角三角形的應用,能借助仰角構造直角三角形,并結合圖形利用三角函數解直角三角形是解題的關鍵.25、(1);(2);(3)【解析】(1)將A,B兩點的坐標代入拋物線解析式中,得到關于a,b的方程組,解之求得a,b的值,即得解析式,并化為頂點式即可;(2)過點A作AH∥y軸交BC于H,BE于G,求出直線BC,BE的解析式,繼而可以求得G、H點的坐標,進一步求出GH,聯立BE與拋物線方程求出點F的坐標,然后根據三角形面積公式求出△FHB的面積;(3)設點M坐標為(2,m),由題意知△OMB是直角三角形,進而利用勾股定理建立關于m的方程,求出點M的坐標,從而求出MD,最后求出時間t.【詳解】(1)∵拋物線與軸交于A(1,0),B(3,0)兩點,∴∴∴拋物線解析式為.(2)如圖1,

過點A作AH∥y軸交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直線BC解析式為y=x-2,∵H(1,y)在直線BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直線BE解析式為y=-x-1,∴G(1,-),∴GH=,∵直線BE:y=-x-1與拋物線y=-x2+x-2相較于F,B,∴F(,-)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論