陜西省西安市經(jīng)開第一校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第1頁
陜西省西安市經(jīng)開第一校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第2頁
陜西省西安市經(jīng)開第一校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第3頁
陜西省西安市經(jīng)開第一校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第4頁
陜西省西安市經(jīng)開第一校2023-2024學年中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安市經(jīng)開第一校2023-2024學年中考數(shù)學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的算術平方根為()A. B. C. D.2.已知一組數(shù)據(jù)2、x、8、1、1、2的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是()A.3.1;B.4;C.2;D.6.1.3.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(,4),則△AOC的面積為A.12 B.9 C.6 D.44.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉90°,得△ABF,連接EF交AB于H,有如下五個結論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結論有()A.2個 B.3個 C.4個 D.5個5.如圖所示,點E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°6.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.7.如圖,圓O是等邊三角形內切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°8.下列說法中,正確的個數(shù)共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個9.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.2510.下列說法正確的是()A.2a2b與–2b2a的和為0B.的系數(shù)是,次數(shù)是4次C.2x2y–3y2–1是3次3項式D.x2y3與–是同類項11.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機摸出一個球,摸出的球是紅球的概率是()A. B. C. D.12.計算4×(–9)的結果等于A.32 B.–32 C.36 D.–36二、填空題:(本大題共6個小題,每小題4分,共24分.)13.《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架,其中方程術是重要的數(shù)學成就.書中有一個方程問題:今有醇酒一斗,直錢五十;行酒一斗,直錢一十.今將錢三十,得酒二斗.問醇、行酒各得幾何?意思是:今有美酒一斗,價格是50錢;普通酒一斗,價格是10錢.現(xiàn)在買兩種酒2斗共付30錢,問買美酒、普通酒各多少?設買美酒x斗,買普通酒y斗,則可列方程組為______________.14.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結果保留π).15.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為______個.16.如圖,在平面直角坐標系中,點A是拋物線與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的等邊三角形ABC的周長為.17.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側,連接BD,交AC于點O,取AC,BD的中點E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.18.若一個圓錐的底面圓的周長是cm,母線長是,則該圓錐的側面展開圖的圓心角度數(shù)是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.20.(6分)商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.設每件商品降價x元.據(jù)此規(guī)律,請回答:(1)商場日銷售量增加▲件,每件商品盈利▲元(用含x的代數(shù)式表示);(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?21.(6分)已知關于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數(shù)根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.22.(8分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.求反比例函數(shù)的解析式;若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.23.(8分)為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元。求文具袋和圓規(guī)的單價。學校準備購買文具袋20個,圓規(guī)若干,文具店給出兩種優(yōu)惠方案:方案一:購買一個文具袋還送1個圓規(guī)。方案二:購買圓規(guī)10個以上時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.①設購買面規(guī)m個,則選擇方案一的總費用為______,選擇方案二的總費用為______.②若學校購買圓規(guī)100個,則選擇哪種方案更合算?請說明理由.24.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(包括△OBC的邊界),求h的取值范圍;(3)設點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.25.(10分)4月23日是世界讀書日,總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣?!蹦承m憫栒伲膭顜熒谜n余時間廣泛閱讀,該校文學社為了解學生課外閱讀的情況,抽樣調查了部分學生每周用于課外閱讀的時間,過程如下:收集數(shù)據(jù)從學校隨機抽取20名學生,進行了每周用于課外閱讀時間的調查,數(shù)據(jù)如下(單位:min):30608150401101301469010060811201407081102010081整理數(shù)據(jù)按如下分段整理樣本數(shù)據(jù)并補全表格:課外閱讀時間(min)等級DCBA人數(shù)38分析數(shù)據(jù)補全下列表格中的統(tǒng)計量:平均數(shù)中位數(shù)眾數(shù)80得出結論(1)用樣本中的統(tǒng)計量估計該校學生每周用于課外閱讀時間的情況等級為;(2)如果該?,F(xiàn)有學生400人,估計等級為“”的學生有多少名?(3)假設平均閱讀一本課外書的時間為160分鐘,請你選擇一種統(tǒng)計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?26.(12分)如圖1,一枚質地均勻的正六面體骰子的六個面分別標有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落在圈D;若第二次擲得2,就從圈D開始順時針連續(xù)跳2個邊長,落得圈B;…設游戲者從圈A起跳.小賢隨機擲一次骰子,求落回到圈A的概率P1.小南隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?27.(12分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術平方根即可.詳解:∵=2,而2的算術平方根是,∴的算術平方根是,故選B.點睛:此題主要考查了算術平方根的定義,解題時應先明確是求哪個數(shù)的算術平方根,否則容易出現(xiàn)選A的錯誤.2、A【解析】∵數(shù)據(jù)組2、x、8、1、1、2的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)按從小到大排列為:2、2、2、1、1、8,∴這組數(shù)據(jù)的中位數(shù)是:(2+1)÷2=3.1.故選A.3、B【解析】∵點,是中點∴點坐標∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標為-6又∵點在雙曲線∴點坐標為∴從而,故選B4、C【解析】

由旋轉性質得到△AFB≌△AED,再根據(jù)相似三角對應邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質、等腰直角三角形的性質、全等三角形的判定和性質等知識,熟練地應用旋轉的性質以及相似三角形的性質是解決問題的關鍵.5、C【解析】

由平行線的判定定理可證得,選項A,B,D能證得AC∥BD,只有選項C能證得AB∥CD.注意掌握排除法在選擇題中的應用.【詳解】A.∵∠3=∠A,本選項不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項不能判斷AB∥CD,故D錯誤.故選:C.【點睛】考查平行線的判定,掌握平行線的判定定理是解題的關鍵.6、D【解析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.7、D【解析】

由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點睛】此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).8、C【解析】

根據(jù)外接圓的性質,圓的對稱性,三角形的內心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內心是三個內角平分線的交點,到三邊的距離相等,錯誤;故選:C.【點睛】此題考查了外接圓的性質,三角形的內心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.9、C【解析】

先根據(jù)三角形三條邊的關系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.10、C【解析】

根據(jù)多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義逐一判斷可得.【詳解】A、2a2b與-2b2a不是同類項,不能合并,此選項錯誤;B、πa2b的系數(shù)是π,次數(shù)是3次,此選項錯誤;C、2x2y-3y2-1是3次3項式,此選項正確;D、x2y3與﹣相同字母的次數(shù)不同,不是同類項,此選項錯誤;故選C.【點睛】本題主要考查多項式、單項式、同類項,解題的關鍵是掌握多項式的項數(shù)和次數(shù)及單項式的系數(shù)和次數(shù)、同類項的定義.11、B【解析】袋中一共7個球,摸到的球有7種可能,而且機會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.12、D【解析】

根據(jù)有理數(shù)的乘法法則進行計算即可.【詳解】故選:D.【點睛】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

設買美酒x斗,買普通酒y斗,根據(jù)“美酒一斗的價格是50錢、買兩種酒2斗共付30錢”列出方程組.【詳解】依題意得:.故答案為.【點睛】考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程組.14、.【解析】

圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質.15、9n+1.【解析】

∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數(shù)之和=9n+1.故答案為9n+1.16、18。【解析】根據(jù)二次函數(shù)的性質,拋物線的對稱軸為x=3?!逜是拋物線與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸?!郃,B關于x=3對稱?!郃B=6。又∵△ABC是等邊三角形,∴以AB為邊的等邊三角形ABC的周長為6×3=18。17、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質得BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【點睛】本題考查了正方形的性質與全等三角形的性質,解題的關鍵是熟練的掌握正方形與全等三角形的性質與應用.18、【解析】

利用圓錐的底面周長和母線長求得圓錐的側面積,然后再利用圓錐的面積的計算方法求得側面展開扇形的圓心角的度數(shù)即可【詳解】∵圓錐的底面圓的周長是,∴圓錐的側面扇形的弧長為cm,,解得:故答案為.【點睛】此題考查弧長的計算,解題關鍵在于求得圓錐的側面積三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2);(3)1.【解析】

(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設⊙O的半徑為r,利用等腰三角形的性質得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.20、(1)2x50-x(2)每件商品降價20元,商場日盈利可達2100元.【解析】

(1)2x50-x.(2)解:由題意,得(30+2x)(50-x)=2100解之得x1=15,x2=20.∵該商場為盡快減少庫存,降價越多越吸引顧客.∴x=20.答:每件商品降價20元,商場日盈利可達2100元.21、方程的根【解析】

(1)根據(jù)方程的系數(shù)結合根的判別式,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【詳解】(1)∵關于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個不相等的實數(shù)根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當k=0時,原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當k=0時,方程的根為0和﹣1.【點睛】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數(shù)根”;(1)取k=0,再利用分解因式法解方程.22、(1)y=;(2)1;【解析】

(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數(shù)的解析式求得m的值,根據(jù)平行四邊形的面積公式即可求解.【詳解】(1)把B坐標代入反比例解析式得:k=12,則反比例函數(shù)解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數(shù)得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點睛】本題為反比例函數(shù)的綜合應用,考查的知識點有待定系數(shù)法、平行四邊形的性質、中點的求法.在(1)中注意待定系數(shù)法的應用,在(2)中用m表示出E點的坐標是解題的關鍵.23、(1)文具袋的單價為15元,圓規(guī)單價為3元;(2)①方案一總費用為元,方案二總費用為元;②方案一更合算.【解析】

(1)設文具袋的單價為x元/個,圓規(guī)的單價為y元/個,根據(jù)“購買1個文具袋和2個圓規(guī)需21元;購買2個文具袋和3個圓規(guī)需39元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;

(2)根據(jù)總價=單價×數(shù)量結合兩種優(yōu)惠方案,設購買面規(guī)m個,分別求出選擇方案一和選擇方案二所需費用,然后代入m=100計算比較后即可得出結論.【詳解】(1)設文具袋的單價為x元,圓規(guī)單價為y元。由題意得解得答:文具袋的單價為15元,圓規(guī)單價為3元。(2)①設圓規(guī)m個,則方案一總費用為:元方案二總費用元故答案為:元;②買圓規(guī)100個時,方案一總費用:元,方案二總費用:元,∴方案一更合算?!军c睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.24、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】

(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側,根據(jù)二次函數(shù)圖象的性質可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(包括△OBC的邊界)時h的取值范圍.(3)設P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【點睛】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質等知識點.解(1)的關鍵是掌握待定系數(shù)法,解(2)的關鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關鍵是證明△BNP≌△PMQ.25、(1)填表見解析;(2)160名;(3)平均數(shù);26本.【解析】【分析】先確定統(tǒng)計表中的C、A等級的人數(shù),再根據(jù)中位數(shù)和眾數(shù)的定義得到樣本數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論