版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市重點達(dá)標(biāo)名校2024年中考聯(lián)考數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④2.如圖所示,數(shù)軸上兩點A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(
)A.a(chǎn)
B.b
C. D.3.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.4.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.5.平面直角坐標(biāo)系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數(shù)軸上可表示為()A. B.C. D.6.下列所給函數(shù)中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+17.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯颍?0m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m8.下列二次根式中,是最簡二次根式的是()A. B. C. D.9.以坐標(biāo)原點為圓心,以2個單位為半徑畫⊙O,下面的點中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)10.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對二、填空題(共7小題,每小題3分,滿分21分)11.如圖,五邊形是正五邊形,若,則__________.12.如圖所示,在平面直角坐標(biāo)系中,已知反比例函數(shù)y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個頂點B、C恰好同時落在反比例函數(shù)的圖象上,則反比例函數(shù)的解析式是______________.13.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉(zhuǎn),當(dāng)點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.14.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=________.15.小紅沿坡比為1:的斜坡上走了100米,則她實際上升了_____米.16.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F(xiàn)分別在OA,,OB上,則圖中陰影部分的面積為__________.17.已知點A(2,4)與點B(b﹣1,2a)關(guān)于原點對稱,則ab=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.19.(5分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,連接PM、PB,設(shè)A、P兩點間的距離為xcm,PM+PB長度為ycm.小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補(bǔ)全表格時相關(guān)數(shù)值保留一位小數(shù))(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象.(3)結(jié)合畫出的函數(shù)圖象,解決問題:PM+PB的長度最小值約為______cm.20.(8分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標(biāo)為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標(biāo),并求出點E縱坐標(biāo)的范圍;(3)求△BCE的面積最大值.21.(10分)先化簡,然后從中選出一個合適的整數(shù)作為的值代入求值.22.(10分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.23.(12分)拋物線y=﹣x2+(m﹣1)x+m與y軸交于(0,3)點.(1)求出m的值并畫出這條拋物線;(2)求它與x軸的交點和拋物線頂點的坐標(biāo);(3)x取什么值時,拋物線在x軸上方?(4)x取什么值時,y的值隨x值的增大而減???24.(14分)在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點B,與直線l1交于點C,若S△ABC≥6,求m的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.2、D【解析】
∵負(fù)數(shù)小于正數(shù),在(0,1)上的實數(shù)的倒數(shù)比實數(shù)本身大.∴<a<b<,故選D.3、C【解析】
混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設(shè)瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應(yīng)的等量關(guān)系是解決本題的關(guān)鍵.4、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是記住扇形的面積公式:S=.5、B【解析】
根據(jù)第二象限中點的特征可得:,解得:.在數(shù)軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征6、A【解析】
根據(jù)二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及反比例函數(shù)的性質(zhì)判斷出函數(shù)符合y隨x的增大而減小的選項.【詳解】解:A.此函數(shù)為一次函數(shù),y隨x的增大而減小,正確;B.此函數(shù)為二次函數(shù),當(dāng)x<0時,y隨x的增大而減小,錯誤;C.此函數(shù)為反比例函數(shù),在每個象限,y隨x的增大而減小,錯誤;D.此函數(shù)為一次函數(shù),y隨x的增大而增大,錯誤.故選A.【點睛】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì),掌握函數(shù)的增減性是解決問題的關(guān)鍵.7、C【解析】分析:結(jié)合2個圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.8、B【解析】
根據(jù)最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式判斷即可.【詳解】A、=4,不符合題意;B、是最簡二次根式,符合題意;C、=,不符合題意;D、=,不符合題意;故選B.【點睛】本題考查最簡二次根式的定義.最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式.9、B【解析】
根據(jù)點到圓心的距離和半徑的數(shù)量關(guān)系即可判定點與圓的位置關(guān)系.【詳解】A選項,(1,1)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),B選項(,)到坐標(biāo)原點的距離為=2,因此點在圓上,C選項(1,3)到坐標(biāo)原點的距離為>2,因此點在圓外D選項(1,)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),故選B.【點睛】本題主要考查點與圓的位置關(guān)系,解決本題的關(guān)鍵是要熟練掌握點與圓的位置關(guān)系.10、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、72【解析】分析:延長AB交于點F,根據(jù)得到∠2=∠3,根據(jù)五邊形是正五邊形得到∠FBC=72°,最后根據(jù)三角形的外角等于與它不相鄰的兩個內(nèi)角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質(zhì)和正五邊形的性質(zhì),正確把握五邊形的性質(zhì)是解題關(guān)鍵.12、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設(shè)菱形平移后B的坐標(biāo)是(x,4),C的坐標(biāo)是(1+x,2).∵B、C落在反比例函數(shù)的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標(biāo)是(1,4),代入反比例函數(shù)的解析式得:k=1×4=4,即B、C落在反比例函數(shù)的圖象上,菱形的平移距離是1,反比例函數(shù)的解析式是y=.故答案為y=.點睛:本題考查了菱形的性質(zhì),用待定系數(shù)法求反比例函數(shù)的解析式,平移的性質(zhì)的應(yīng)用,主要考查學(xué)生的計算能力.13、2【解析】分析:設(shè)CD=3x,則CE=1x,BE=12﹣1x,依據(jù)∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x,再根據(jù)Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進(jìn)而得出CD=2.詳解:如圖所示,設(shè)CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質(zhì),勾股定理以及旋轉(zhuǎn)的性質(zhì),解題時注意:對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.14、1:3:5【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.故答案為1:3:5.點睛:本題考查了平行線的性質(zhì)及相似三角形的性質(zhì).相似三角形的面積比等于相似比的平方.15、50【解析】
根據(jù)題意設(shè)鉛直距離為x,則水平距離為,根據(jù)勾股定理求出x的值,即可得到結(jié)果.【詳解】解:設(shè)鉛直距離為x,則水平距離為,根據(jù)題意得:,解得:(負(fù)值舍去),則她實際上升了50米,故答案為:50【點睛】本題考查了解直角三角形的應(yīng)用,此題關(guān)鍵是用同一未知數(shù)表示出下降高度和水平前進(jìn)距離.16、8π﹣8【解析】
連接EF、OC交于點H,根據(jù)正切的概念求出FH,根據(jù)菱形的面積公式求出菱形FOEC的面積,根據(jù)扇形面積公式求出扇形OAB的面積,計算即可.【詳解】連接EF、OC交于點H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點睛】本題考查了扇形面積的計算、菱形的性質(zhì),熟練掌握扇形的面積公式、菱形的性質(zhì)、靈活運用銳角三角函數(shù)的定義是解題的關(guān)鍵.17、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)欲證明DB=DE.,只要證明∠DBE=∠DEB;
(2)欲證明CF是⊙O的切線.,只要證明BC⊥CF即可;(3)根據(jù)S陰影部分S扇形S△OBD計算即可.【詳解】解:(1)∵E是△ABC的內(nèi)心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE(2)連接CD∵DA平分∠BAC,∴∠DAB=∠DAC,∴BD=CD,又∵BD=DF,∴CD=DB=DF,∴∴BC⊥CF,∴CF是⊙O的切線(3)連接OD∵O、D是BC、BF的中點,CF4,∴OD2.∵CF是⊙O的切線,∴∴△BOD為等腰直角三角形∴S陰影部分S扇形S△OBD.【點睛】本題考查數(shù)學(xué)圓的綜合題,考查了圓的切線的證明,扇形的面積公式等,注意切線的證明方法,是高頻考點.19、(1)2.1;(2)見解析;(3)x=2時,函數(shù)有最小值y=4.2【解析】
(1)通過作輔助線,應(yīng)用三角函數(shù)可求得HM+HN的值即為x=2時,y的值;(2)可在網(wǎng)格圖中直接畫出函數(shù)圖象;(3)由函數(shù)圖象可知函數(shù)的最小值.【詳解】(1)當(dāng)點P運動到點H時,AH=3,作HN⊥AB于點N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據(jù)函數(shù)圖象可知,當(dāng)x=2時,函數(shù)有最小值y=4.2.故答案為:4.2.【點睛】本題考查了二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.20、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當(dāng)m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設(shè),利用求線段中點的公式列出關(guān)于m的方程組,再利用0<m<1即可求解;(1)連結(jié)BD,過點D作x軸的垂線交BC于點H,由,設(shè)出點D的坐標(biāo),進(jìn)而求出點H的坐標(biāo),利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設(shè)點E(a,b)∵0<m<1,∴當(dāng)m=1時,縱坐標(biāo)最小值為2當(dāng)m=1時,最大值為2∴點E縱坐標(biāo)的范圍為(1)連結(jié)BD,過點D作x軸的垂線交BC于點H∵CE=CD∴H(m,-m+1)∴當(dāng)m=1.5時,.點睛:本題考查了二次函數(shù)的綜合題、待定系數(shù)法、一次函數(shù)等知識點,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,會用方程的思想解決問題.21、-1【解析】
先化簡,再選出一個合適的整數(shù)代入即可,要注意a的取值范圍.【詳解】解:,當(dāng)時,原式.【點睛】本題考查的是代數(shù)式的求值,熟練掌握代數(shù)式的化簡是解題的關(guān)鍵.22、(1)-6;(2).【解析】
(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標(biāo),作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度LED燈具安裝與節(jié)能效果評估合同3篇
- 2024糧食購銷代理合作合同版B版
- 2024薪資保密制度與員工隱私保護(hù)專項合同3篇
- 2025年度現(xiàn)代農(nóng)業(yè)土地承包種植技術(shù)引進(jìn)合同3篇
- 2025年度智能大門研發(fā)與購銷合同4篇
- 2025年度數(shù)據(jù)中心能源優(yōu)化承包經(jīng)營協(xié)議4篇
- 2024水泵安裝項目施工合作合同版B版
- 2025年度五星級酒店廚師服務(wù)合同細(xì)則4篇
- 2024跨越國界的藝術(shù)品買賣合同
- 2025年度水利工程承攬工程施工合同4篇
- 銳途管理人員測評試題目的
- 焊接材料-DIN-8555-標(biāo)準(zhǔn)
- 工程索賠真實案例范本
- 重癥醫(yī)學(xué)科運用PDCA循環(huán)降低ICU失禁性皮炎發(fā)生率品管圈QCC持續(xù)質(zhì)量改進(jìn)成果匯報
- 個人股權(quán)證明書
- 醫(yī)院運送工作介紹
- 重癥患者的容量管理
- 學(xué)習(xí)游戲?qū)χ行W(xué)生學(xué)業(yè)成績的影響
- 小學(xué)四年級上冊遞等式計算100題及答案
- 新版?zhèn)€人簡歷Excel表格模板共2聯(lián)
- (完整)中國象棋教案
評論
0/150
提交評論