




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆上海市松江區(qū)數(shù)學九上期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖是由6個完全相同的小正方體組成的幾何體,其俯視圖為()A. B. C. D.2.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.3.如圖所示,在矩形ABCD中,點F是BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則()A.4 B.6 C.8 D.104.已知一組數(shù)據(jù)2,3,4,x,1,4,3有唯一的眾數(shù)4,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.3 C.4 D.55.拋物線y=2(x-1)2-6的對稱軸是().A.x=-6 B.x=-1 C.x= D.x=16.下列各組中的四條線段成比例的是()A.4cm,2cm,1cm,3cmB.1cm,2cm,3cm,5cmC.3cm,4cm,5cm,6cmD.1cm,2cm,2cm,4cm7.如圖,反比例函數(shù)第一象限內(nèi)的圖象經(jīng)過的頂點,,,且軸,點,,的橫坐標分別為1,3,若,則的值為()A.1 B. C. D.28.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°9.如圖,點D是△ABC的邊BC上一點,∠BAD=∠C,AC=2AD,如果△ACD的面積為15,那么△ABD的面積為()A.15 B.10 C.7.5 D.510.如圖,△ABC中,DE∥BC,BE與CD交于點O,AO與DE,BC交于點N、M,則下列式子中錯誤的是()A. B. C. D.二、填空題(每小題3分,共24分)11.一個周長確定的扇形,要使它的面積最大,扇形的圓心角應為______度.12.已知點P是線段AB的黃金分割點,PA>PB,AB=4cm,則PA=____cm.13.如圖,將矩形ABCD繞點A旋轉(zhuǎn)至矩形AB′C′D′位置,此時AC′的中點恰好與D點重合,AB′交CD于點E.若AB=3,則△AEC的面積為_____.14.一元二次方程(x+1)(x-3)=2x-5根的情況_______.(表述正確即可)15.如圖,在平行四邊形ABCD中,點E在AD邊上,且AE:ED=1:2,若EF=4,則CE的長為___16.在△ABC中,∠ABC=30°,AB=,AC=1,則∠ACB的度數(shù)為____________.17.漢代數(shù)學家趙爽在注解《周髀算經(jīng)》時給出的“趙爽弦圖”是我國古代數(shù)學的瑰寶.如圖所示的弦圖中,四個直角三角形都是全等的,它們的兩直角邊之比均為,現(xiàn)隨機向該圖形內(nèi)擲一枚小針,則針尖落在陰影區(qū)域的概率為__________.18.已知△ABC中,AB=5,sinB=,AC=4,則BC=_____.三、解答題(共66分)19.(10分)如圖,是平行四邊形的對角線,.(1)求證:四邊形是菱形;(2)若,,求菱形的面積.20.(6分)數(shù)學興趣小組活動中,小明進行數(shù)學探究活動,將邊長為的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.(1)小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.21.(6分)如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設(shè)運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設(shè)△AMN的面積為S,求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當四邊形MNPC為菱形時,求t的值;⑶當t的值為,△AMN是等腰三角形.22.(8分)數(shù)學興趣小組到黃河風景名勝區(qū)測量炎帝塑像(塑像中高者)的高度.如圖所示,炎帝塑像DE在高55m的小山EC上,在A處測得塑像底部E的仰角為34°,再沿AC方向前進21m到達B處,測得塑像頂部D的仰角為60°,求炎帝塑像DE的高度.(精確到1m.參考數(shù)據(jù):,,,)23.(8分)如圖,有一個三等分數(shù)字轉(zhuǎn)盤,小紅先轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,小芳后轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,從而確定了點的坐標,(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)字為止)(1)小紅轉(zhuǎn)動轉(zhuǎn)盤,求指針指向的數(shù)字2的概率;(2)請用列舉法表示出由,確定的點所有可能的結(jié)果.(3)求點在函數(shù)圖象上的概率.24.(8分)已知關(guān)于x的一元二次方程.(1)若是方程的一個解,寫出、滿足的關(guān)系式;(2)當時,利用根的判別式判斷方程根的情況;(3)若方程有兩個相等的實數(shù)根,請寫出一組滿足條件的、的值,并求出此時方程的根.25.(10分)如圖,AB是⊙O的直徑,直線MC與⊙O相切于點C.過點A作MC的垂線,垂足為D,線段AD與⊙O相交于點E.(1)求證:AC是∠DAB的平分線;(2)若AB=10,AC=4,求AE的長.26.(10分)如圖,ABCD是邊長為1的正方形,在它的左側(cè)補一個矩形ABFE,使得新矩形CEFD與矩形ABEF相似,求BE的長.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)從上面看到的圖形即為俯視圖進一步分析判斷即可.【詳解】從上面看第一排是三個小正方形,第二排右邊是一個小正方形,故選:B.【點睛】本題主要考查了三視圖的判斷,熟練掌握相關(guān)方法是解題關(guān)鍵.2、C【分析】過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設(shè)⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.3、C【解析】由矩形的性質(zhì)得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA證明△BEF≌△CDF,得出BE=CD=AB,則AE=2AB=2CD,再根據(jù)AOECOD,面積比等于相似比的平方即可。【詳解】∵四邊形ABCD是矩形,
∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,
∴∠EBF=90°,
∵F為BC的中點,
∴BF=CF,
在△BEF和△CDF中,,
∴△BEF≌△CDF(ASA),
∴BE=CD=AB,
∴AE=2AB=2CD,
∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故選:C.【點睛】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì);熟練掌握有關(guān)的性質(zhì)與判定是解決問題的關(guān)鍵.4、B【分析】根據(jù)題意由有唯一的眾數(shù)4,可知x=4,然后根據(jù)中位數(shù)的定義求解即可.【詳解】∵這組數(shù)據(jù)有唯一的眾數(shù)4,∴x=4,∵將數(shù)據(jù)從小到大排列為:1,2,1,1,4,4,4,∴中位數(shù)為:1.故選B.【點睛】本題考查了眾數(shù)、中位數(shù)的定義,屬于基礎(chǔ)題,掌握基本定義是關(guān)鍵.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù).當有奇數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置的數(shù);當有偶數(shù)個數(shù)時,中位數(shù)是從小到大排列順序后位于中間位置兩個數(shù)的平均數(shù).5、D【解析】根據(jù)拋物線的頂點式,直接得出結(jié)論即可.【詳解】解:∵拋物線y=2(x-1)2-6,
∴拋物線的對稱軸是x=1.
故選D.【點睛】本題考查了二次函數(shù)的性質(zhì),要熟悉二次函數(shù)的頂點式:y=a(x-h)2+k(a≠0),其頂點坐標為(h,k),對稱軸為x=h.6、D【分析】四條線段成比例,根據(jù)線段的長短關(guān)系,從小到大排列,判斷中間兩項的積是否等于兩邊兩項的積,相等即成比例.【詳解】A.從小到大排列,由于1,所以不成比例,不符合題意;B.從小到大排列,由于1,所以不成比例,不符合題意;C.從小到大排列,由于3,所以不成比例,不符合題意;D.從小到大排列,由于1,所以成比例,符合題意;故選D.【點睛】此題主要考查線段成比例的關(guān)系,解題的關(guān)鍵是通過計算判斷是否成比例.7、C【分析】先表示出CD,AD的長,然后在Rt△ACD中利用∠ACD的正切列方程求解即可.【詳解】過點作,∵點、點的橫坐標分別為1,3,且,均在反比例函數(shù)第一象限內(nèi)的圖象上,∴,,∴CD=2,AD=k-,∵,,,∴,,∵tan∠ACD=,∴,即,∴.故選:C.【點睛】本題考查了等腰三角形的性質(zhì),解直角三角形,以及反比例函數(shù)圖像上點的坐標特征,熟練掌握各知識點是解答本題的關(guān)鍵.8、C【分析】根據(jù)題意畫出相應的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.9、D【分析】首先證明△BAD∽△BCA,由相似三角形的性質(zhì)可得:△BAD的面積:△BCA的面積為1:4,得出△BAD的面積:△ACD的面積=1:3,即可求出△ABD的面積.【詳解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴,∴,∵△ACD的面積為15,∴△ABD的面積=×15=5,故選:D.【點睛】本題主要考查了相似三角形的判定與性質(zhì),掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.10、D【解析】試題分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正確;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D錯誤.故選D.點睛:本題考查了相似三角形的判定與性質(zhì).注意平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;相似三角形對應邊成比例.注意數(shù)形結(jié)合思想的應用.二、填空題(每小題3分,共24分)11、【分析】設(shè)扇形的弧長,然后,建立關(guān)系式,結(jié)合二次函數(shù)的圖象與性質(zhì)求解最值即可.【詳解】設(shè)扇形面積為S,半徑為r,圓心角為α,則扇形弧長為a-2r,所以S=(a-2r)r=-(r-)2+.故當r=時,扇形面積最大為.∴∴此時,扇形的弧長為2r,∴,∴故答案為:.【點睛】本題重點考查了扇形的面積公式、弧長公式、二次函數(shù)的最值等知識,屬于基礎(chǔ)題.12、2-2【分析】根據(jù)黃金分割點的定義,知AP是較長線段;則AP=AB,代入運算即可.【詳解】解:由于P為線段AB=4的黃金分割點,且AP是較長線段;則AP=4×=cm,故答案為:(2-2)cm.【點睛】此題考查了黃金分割的定義,應該識記黃金分割的公式:較短的線段=原線段的,難度一般.13、【分析】先求出∠ACD=30°,進而可算出CE、AD,再算出△AEC的面積.【詳解】如圖,由旋轉(zhuǎn)的性質(zhì)可知:AC=AC',∵D為AC'的中點,∴AD=,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=,∴CE=,DE=,AD=,∴.故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、矩形的性質(zhì)、直角三角形中30度角的性質(zhì),三角形面積計算等知識點,難度不大.清楚旋轉(zhuǎn)的“不變”特性是解答的關(guān)鍵.14、有兩個正根【分析】將原方程這里為一元二次方程的一般形式直接解方程或者求判別式與0的關(guān)系都可解題.【詳解】解:(x+1)(x-3)=2x-5整理得:,即,配方得:,解得:,,∴該一元二次方程根的情況是有兩個正跟;故答案為:有兩個正根.【點睛】此題考查解一元二次方程,或者求判別式與根的個數(shù)的關(guān)系.15、1【分析】根據(jù)AE:ED=1:2,得到BC=3AE,證明△DEF∽△BCF,得到,求出FC,即可求出CE.【詳解】解:∵AE:ED=1:2,∴DE=2AE,∵四邊形ABCD是平行四邊形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案為:1.【知識點】本題考查平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì),理解相似三角形的判定與性質(zhì)定理是解題關(guān)鍵.16、60°或120°.【分析】作AD⊥BC于D,先在Rt△ABD中求出AD的長,解直角三角形求出∠ACD,即可求出答案.【詳解】如圖,作AD⊥BC于D,如圖1,在Rt△ABD中,∠ABC=30°,AB=,AC=1,∴AD=AB=,在Rt△ACD中,sinC=,∴∠C=60°,即∠ACB=60°,同理如圖2,同理可得∠ACD=60°,∴∠ACB=120°.故答案為60°或120°.【點睛】此題主要考查三角函數(shù)的應用,解題的關(guān)鍵是根據(jù)題意分情況作出圖形求解.17、【解析】分析:設(shè)勾為2k,則股為3k,弦為k,由此求出大正方形面積和陰影區(qū)域面積,由此能求出針尖落在陰影區(qū)域的概率.詳解:設(shè)勾為2k,則股為3k,弦為k,∴大正方形面積S=k×k=13k2,中間小正方形的面積S′=(3?2)k?(3?2)k=k2,故陰影部分的面積為:13k2-k2=12k2∴針尖落在陰影區(qū)域的概率為:.故答案為.點睛:此題主要考查了幾何概率問題,用到的知識點為:概率=相應的面積與總面積之比.18、4+或4﹣【分析】根據(jù)題意畫出兩個圖形,過A作AD⊥BC于D,求出AD長,根據(jù)勾股定理求出BD、CD,即可求出BC.【詳解】有兩種情況:如圖1:過A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如圖2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.綜上所述,BC的長是4+或4﹣.故答案為:4+或4﹣.【點睛】本題考查了解直角三角形的問題,掌握銳角三角函數(shù)的定義以及勾股定理是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)【分析】(1)由平行四邊形的性質(zhì)得出∠DAC=∠BCA,再由已知條件得出∠BAC=∠BCA,即可得出AB=BC,進而證明是菱形即可;(2)連接BD交AC于O,證明四邊形ABCD是菱形,得出AC⊥BD,,OB=OD=BD,由勾股定理求出OB,得出BD,?ABCD的面積=AC?BD,即可得出結(jié)果.【詳解】(1)證明:如圖,在平行四邊形中,∵,∴,又∵,∴,∴,∴平行四邊形是菱形.(2)解:如圖,連接,與交于由(1)四邊形,是菱形,∴,,在中,,∴,∴菱形的面積為.【點睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的判定、勾股定理、菱形面積的計算;熟練掌握平行四邊形的性質(zhì),證明四邊形是菱形是解決問題的關(guān)鍵.20、(1)詳見解析;(2)3.【解析】(1)根據(jù)正方形的性質(zhì),得△ADG≌△ABE,所以∠AGD=∠AEB.延長EB交DG于點H.由圖形及題意,得到∠DHE=90°,所以,.(2)根據(jù)正方形的性質(zhì)等,先證明△ADG≌△ABE(SAS),得到DG=BE.過點A作AM⊥DG交DG于點M.由題意,得AM=BD=1,再由勾股定理,得到GM=2,所以DG=DM+GM=1+2=3,最后得到BE=DG=3.【詳解】(1)四邊形ABCD與四邊形AEFG是正方形∴AD=AB,∠DAG=∠BAE=90°,AG=AE∴△ADG≌△ABE∴∠AGD=∠AEB如圖1,延長EB交DG于點H△ADG中∠AGD+∠ADG=90°∴∠AEB+∠ADG=90°△DEH中,∠AEB+∠ADG+∠DHE=180°∴∠DHE=90°∴(2)四邊形ABCD與四邊形AEFG是正方形∴AD=AB,∠DAB=∠GAE=90°,AG=AE∴∠DAB+∠BAG=∠GAE+∠BAG∴∠DAG=∠BAEAD=AB,∠DAG=∠BAE,AG=AE∴△ADG≌△ABE(SAS)∴DG=BE如圖2,過點A作AM⊥DG交DG于點M,∠AMD=∠AMG=90°BD是正方形ABCD的對角線∴∠MDA=∠MDA=∠MAB=45°,BD=2∴AM=BD=1在Rt△AMG中,∵∴GM=2∵DG=DM+GM=1+2=3∴BE=DG=3【點睛】本題考查了三角形全等判定定理及勾股定理在圖形證明中的綜合運用,熟練掌握三角形全等判定定理及勾股定理在圖形證明中的綜合運用.21、(1),;(2)t=;(3)或或【分析】(1)如圖過點M作MD⊥AC于點D,利用相似三角形的性質(zhì)求出MD即可解決問題;(2)連接PM,交AC于D,,當四邊形MNPC為菱形時,ND=,即可用t表示AD,再結(jié)合第一問的相似可以用另外一個含t式子表示AD,列方程計算即可;(3)分別用t表示出AP、AQ、PQ,再分三種情況討論:①當AQ=AP②當PQ=AQ③當PQ=AP,再分別計算即可.【詳解】解:⑴過點M作MD⊥AC于點D.∵,;∴AB=10cm.BM=AN=2t∴AM=10-2t.∵△ADM∽△ACB∴即∴∴又∴S的最大值是;⑵連接PM,交AC于D,∵四邊形MNPC是菱形,則MP⊥NC,ND=CD∵CN=8-2t∴ND=4-t∴AD=2t+4-t=t+4由⑴知AD=∴=t+4∴t=;(3)由(1)知,PE=﹣t+3,與(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①當AQ=AP,即t=5﹣t時,解得:t1=;②當PQ=AQ,即=t時,解得:t2=,t3=5;③當PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當t為s或s或s時,△APQ是等腰三角形.【點睛】此題主要考查了相似形綜合,用到的知識點是相似三角形的判定與性質(zhì)、勾股定理、三角形的面積公式以及二次函數(shù)的最值問題,關(guān)鍵是根據(jù)題意做出輔助線,利用數(shù)形結(jié)合思想進行解答.22、51【解析】由三角函數(shù)求出,得出,在中,由三角函數(shù)得出,即可得出答案.【詳解】解:,,,,,,,在中,,,,答:炎帝塑像DE的高度約為51m.【點睛】本題考查了解直角三角形的應用,解答本題的關(guān)鍵是根據(jù)仰角和俯角構(gòu)造直角三角形,利用三角函數(shù)的知識求解,難度適中.23、(1);(2)見解析,共9種,;(3)【分析】(1)轉(zhuǎn)動一次有三種可能,出現(xiàn)數(shù)字2只有一種情況,據(jù)此可得出結(jié)果;
(2)根據(jù)題意列表或畫樹狀圖即可得出所有可能的結(jié)果;(3)可以得出只有(1,2)、(2,3)在函數(shù)的圖象上,即可求概率.【詳解】解:(1)根據(jù)題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息化技術(shù)在農(nóng)業(yè)生產(chǎn)中的合作協(xié)議
- 農(nóng)民工在崗培訓與勞務派遣合同
- 購買物業(yè)管理服務協(xié)議書
- 農(nóng)業(yè)生產(chǎn)經(jīng)營資金互助保障協(xié)議
- 智慧寓言伊索寓言故事解讀
- 高考語文復習:專題六、七
- 體育培訓中心學員意外事故的免責及保障協(xié)議
- 高考文言文斷句100題專項練習(附答案及翻譯最方便)
- 小馬過河自我成長的故事解讀
- 農(nóng)業(yè)旅游開發(fā)手冊
- 陰道鏡檢查臨床醫(yī)學知識及操作方法講解培訓PPT
- “教學評一體化”指導的語文教學設(shè)計以統(tǒng)編版語文四年級上冊《蟋蟀的住宅》為例
- AI09人工智能-多智能體
- 石墨烯商業(yè)計劃書
- 放射源基本知識培訓課件
- 【革命歷史題材舞蹈創(chuàng)作手法及思考案例-以紅船為例9400字(論文)】
- 腦血管造影術(shù)后病人的護理查房
- 美術(shù)高考色彩備考教學策略
- 2023年云南省新聞系統(tǒng)事業(yè)單位人員招聘筆試題庫及答案解析
- 教學設(shè)計心肺復蘇
- 正庚烷-正辛烷連續(xù)精餾塔設(shè)計資料
評論
0/150
提交評論