遼寧大連市普蘭店區(qū)第二中學(xué)2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第1頁(yè)
遼寧大連市普蘭店區(qū)第二中學(xué)2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第2頁(yè)
遼寧大連市普蘭店區(qū)第二中學(xué)2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第3頁(yè)
遼寧大連市普蘭店區(qū)第二中學(xué)2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第4頁(yè)
遼寧大連市普蘭店區(qū)第二中學(xué)2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.2.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實(shí)數(shù)的取值范圍是A. B. C. D.3.已知直線(xiàn)y=k(x﹣1)與拋物線(xiàn)C:y2=4x交于A,B兩點(diǎn),直線(xiàn)y=2k(x﹣2)與拋物線(xiàn)D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣124.已知滿(mǎn)足,則的取值范圍為()A. B. C. D.5.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)6.設(shè)全集,集合,,則()A. B. C. D.7.若直線(xiàn)的傾斜角為,則的值為()A. B. C. D.8.設(shè)函數(shù),若函數(shù)有三個(gè)零點(diǎn),則()A.12 B.11 C.6 D.39.曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為()A. B. C. D.10.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.11.已知函數(shù)若關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在R上的函數(shù)滿(mǎn)足:①對(duì)任意的,都有;②當(dāng)時(shí),,則函數(shù)的解析式可以是______________.14.為了了解一批產(chǎn)品的長(zhǎng)度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進(jìn)行檢測(cè),如圖是檢測(cè)結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長(zhǎng)度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為_(kāi)_________.15.已知雙曲線(xiàn)C:()的左、右焦點(diǎn)為,,為雙曲線(xiàn)C上一點(diǎn),且,若線(xiàn)段與雙曲線(xiàn)C交于另一點(diǎn)A,則的面積為_(kāi)_____.16.設(shè),則_____,(的值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.18.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.19.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設(shè),表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.20.(12分)已知變換將平面上的點(diǎn),分別變換為點(diǎn),.設(shè)變換對(duì)應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.21.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿(mǎn)足,求數(shù)列的前2020項(xiàng)的和.22.(10分)在,角、、所對(duì)的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線(xiàn),求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)?,,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.2、D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無(wú)數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿(mǎn)足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿(mǎn)足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.3、D【解析】

分別聯(lián)立直線(xiàn)與拋物線(xiàn)的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€(xiàn)經(jīng)過(guò)C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線(xiàn)與拋物線(xiàn)的交點(diǎn)問(wèn)題,運(yùn)用拋物線(xiàn)的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。4、C【解析】

設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過(guò)點(diǎn)的直線(xiàn)平行于軸時(shí),此時(shí)成立;取所有負(fù)值都成立;當(dāng)過(guò)點(diǎn)時(shí),取正值中的最小值,,此時(shí);故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單線(xiàn)性規(guī)劃的非線(xiàn)性目標(biāo)函數(shù)函數(shù)問(wèn)題,解題時(shí)作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對(duì)于直線(xiàn)斜率要注意斜率不存在的直線(xiàn)是否存在.5、C【解析】

利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因?yàn)?,所以在上單調(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6、D【解析】

求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、B【解析】

根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡(jiǎn),再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線(xiàn)的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線(xiàn)傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.8、B【解析】

畫(huà)出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點(diǎn)個(gè)數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個(gè)或三個(gè)(時(shí)有三個(gè),時(shí)有兩個(gè)),所以關(guān)于的方程只能有一個(gè)根(若有兩個(gè)根,則關(guān)于的方程有四個(gè)或五個(gè)根),由,可得的值分別為,則故選B.【點(diǎn)睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于??碱}型.9、A【解析】

將點(diǎn)代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線(xiàn)斜率,即可由點(diǎn)斜式求的切線(xiàn)方程.【詳解】曲線(xiàn),即,當(dāng)時(shí),代入可得,所以切點(diǎn)坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點(diǎn)斜式可得切線(xiàn)方程為,即,故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,在曲線(xiàn)上一點(diǎn)的切線(xiàn)方程求法,屬于基礎(chǔ)題.10、B【解析】

根據(jù)分段函數(shù),分當(dāng),,將問(wèn)題轉(zhuǎn)化為的零點(diǎn)問(wèn)題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問(wèn)題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.11、B【解析】

令,則,由圖象分析可知在上有兩個(gè)不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個(gè)不同交點(diǎn),要使關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則有兩個(gè)不同的根,設(shè)由根的分布可知,,解得.故選:B.【點(diǎn)睛】本題考查復(fù)合方程根的個(gè)數(shù)問(wèn)題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.12、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點(diǎn)存在性定理可知,函數(shù)g(x)的零點(diǎn)所在的區(qū)間是(0,1),故選B.二、填空題:本題共4小題,每小題5分,共20分。13、(或,答案不唯一)【解析】

由可得是奇函數(shù),再由時(shí),可得到滿(mǎn)足條件的奇函數(shù)非常多,屬于開(kāi)放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時(shí),,知或等,答案不唯一.故答案為:(或,答案不唯一).【點(diǎn)睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達(dá)式確定函數(shù)奇偶性,是一道開(kāi)放性的題,難度不大.14、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長(zhǎng)度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點(diǎn)睛:頻率分布直方圖的縱坐標(biāo)為,因此每一個(gè)小矩形的面積表示樣本個(gè)體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時(shí)常犯的錯(cuò)誤.15、【解析】

由已知得即,,可解得,由在雙曲線(xiàn)C上,代入即可求得雙曲線(xiàn)方程,然后求得直線(xiàn)的方程與雙曲線(xiàn)方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線(xiàn)C上,所以或,所以或(舍去),因此雙曲線(xiàn)C的方程為.又,所以線(xiàn)段的方程為,與雙曲線(xiàn)C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.【點(diǎn)睛】本題主要考查直線(xiàn)與雙曲線(xiàn)的位置關(guān)系,考查雙曲線(xiàn)方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.16、7201【解析】

利用二項(xiàng)展開(kāi)式的通式可求出;令中的,得兩個(gè)式子,代入可得結(jié)果.【詳解】利用二項(xiàng)式系數(shù)公式,,故,,故(=,故答案為:720;1.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式的通項(xiàng)公式的應(yīng)用,考查賦值法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】

(1)先證明四邊形是菱形,進(jìn)而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.以O(shè)為坐標(biāo)原點(diǎn),以射線(xiàn)OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進(jìn)而可求出二面角的正弦值.【詳解】(1)證明:因?yàn)辄c(diǎn)為的中點(diǎn),,所以,因?yàn)?所以,所以四邊形是平行四邊形,因?yàn)?所以平行四邊形是菱形,所以,因?yàn)槠矫嫫矫?且平面平面,所以平面.因?yàn)槠矫?所以平面平面.(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.由題意可知AC,BE,OP兩兩垂直,故以O(shè)為坐標(biāo)原點(diǎn),以射線(xiàn)OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系.因?yàn)榈酌鍭BCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,設(shè)平面ABF的法向量為,則,不妨取,則,設(shè)平面DBF的法向量為,則,不妨取,則,故.記二面角的大小為,故.【點(diǎn)睛】本題考查了面面垂直的證明,考查了二面角的求法,利用空間向量求平面的法向量是解決空間角問(wèn)題的常見(jiàn)方法,屬于中檔題.18、(1)2;(2)【解析】分析:(1)將轉(zhuǎn)化為分段函數(shù),求函數(shù)的最小值(2)分離參數(shù),利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,即.(Ⅱ)因?yàn)楹愠闪ⅲ院愠闪?,?dāng)且僅當(dāng)時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.點(diǎn)睛:本題主要考查含兩個(gè)絕對(duì)值的函數(shù)的最值和不等式的應(yīng)用,第二問(wèn)恒成立問(wèn)題分離參數(shù),利用基本不等式求解很關(guān)鍵,屬于中檔題.19、(1)見(jiàn)解析(2),最大值.【解析】

(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結(jié)合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴當(dāng)時(shí),體積有最大值.【點(diǎn)睛】本題考查了線(xiàn)面垂直的證明和三棱錐的體積,考查了學(xué)生邏輯推理,空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20、(1)(2)1或6【解析】

(1)設(shè),根據(jù)變換可得關(guān)于的方程,解方程即可得到答案;(2)求出特征多項(xiàng)式,再解方程,即可得答案;【詳解】(1)設(shè),則,,即,解得,則.(2)設(shè)矩陣的特征多項(xiàng)式為,可得,令,可得或.【點(diǎn)睛】本題考查矩陣的求解、矩陣的特征值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.21、(1),;(2).【解析】

(1)根據(jù)題意同時(shí)利用等差、等比數(shù)列的通項(xiàng)公式即可求得數(shù)列和的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法即可求得數(shù)列的前2020項(xiàng)的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因?yàn)棰佼?dāng)時(shí),②由①②得,,即,又當(dāng)時(shí),不滿(mǎn)足上式,.數(shù)列的前2020項(xiàng)的和設(shè)③,則④,由③④得:,所以,所以.【點(diǎn)睛】本題

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論