版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2332.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點.給出以下四個結(jié)論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.3.設(shè)函數(shù),當時,,則()A. B. C.1 D.4.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β5.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.6.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.7.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.8.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結(jié)對指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負責指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.1209.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或10.做拋擲一枚骰子的試驗,當出現(xiàn)1點或2點時,就說這次試驗成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗中成功次數(shù)X的期望為()A.13 B.111.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.812.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.14.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據(jù)這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內(nèi)的學生共有____人.15.的展開式中常數(shù)項是___________.16.已知實數(shù)滿足(為虛數(shù)單位),則的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若不等式在時恒成立,則的取值范圍是__________.18.(12分)設(shè)首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.19.(12分)已知,.(1)解;(2)若,證明:.20.(12分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.21.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標方程;(Ⅱ)設(shè)點,直線與曲線相交于,,求的值.22.(10分)如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點,為棱上任意一點,且不與點、點重合..(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應(yīng)用能力.2、C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最小(為下底面面對角線的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.3、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.4、B【解析】
根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關(guān)知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質(zhì)判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.5、D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關(guān)的問題,本題屬于基礎(chǔ)題.6、B【解析】
畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.7、D【解析】
“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉(zhuǎn)換,使問題易于求解.8、C【解析】
可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.9、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.10、C【解析】
每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點睛】本題考查了二項分布求數(shù)學期望,意在考查學生的計算能力和應(yīng)用能力.11、D【解析】
畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎(chǔ)題.12、C【解析】
作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結(jié)合三視圖作出三棱錐的實物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】
根據(jù)偽代碼逆向運算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點睛】本題考查算法中的語言,屬于基礎(chǔ)題.14、750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00515、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.16、【解析】
由虛數(shù)單位的性質(zhì)結(jié)合復(fù)數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查虛數(shù)單位的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【點睛】本題考查含參數(shù)的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問題,本題屬于基礎(chǔ)題.18、(1)p=2;(2)見解析(3)見解析【解析】
(1)取n=1時,由得p=0或2,計算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計算化簡得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計算得到k=1,得到答案.【詳解】(1)n=1時,由得p=0或2,若p=0時,,當n=2時,,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當p=2時,①,則②,②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因為,所以數(shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡得2x﹣2y﹣2=1,顯然x>y﹣2,設(shè)k=x﹣(y﹣2),因為x、y均為整數(shù),所以當k≥2時,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故當k=1,且當x=1,且y﹣2=0時上式成立,即證.【點睛】本題考查了根據(jù)數(shù)列求參數(shù),證明等比數(shù)列,充要條件,意在考查學生的綜合應(yīng)用能力.19、(1);(2)見解析.【解析】
(1)在不等式兩邊平方化簡轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由正弦定理邊化角,再結(jié)合轉(zhuǎn)化即可求解;(Ⅱ)可設(shè),由,再由余弦定理解得,對中,由余弦定理有,通過勾股定理逆定理可得,進而得解【詳解】(Ⅰ)由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.(Ⅱ)設(shè),在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45026-2024側(cè)掃聲吶海洋調(diào)查規(guī)范
- 2024版消防工程協(xié)議外施工補充協(xié)議書版B版
- 2025年度企業(yè)HSE內(nèi)部審計與改進合同3篇
- 2024版短期架橋機租賃協(xié)議
- 二零二五年度高端品牌服裝企業(yè)集中采購合作協(xié)議3篇
- 二零二五年度高科技園區(qū)土地承包經(jīng)營合同2篇
- 2024年礦山巖石開采作業(yè)與施工責任協(xié)議版B版
- 二零二五版婚姻財產(chǎn)協(xié)議書明確夫妻財產(chǎn)分配細則3篇
- 二零二五年度智慧農(nóng)業(yè)項目設(shè)備采購與農(nóng)技支持合同3篇
- 632項目2024年度技術(shù)服務(wù)協(xié)議版B版
- JJF 2122-2024 機動車測速儀現(xiàn)場測速標準裝置校準規(guī)范
- 充電樁四方協(xié)議書范本
- 2024年南京鐵道職業(yè)技術(shù)學院單招職業(yè)技能測試題庫及答案解析
- 2023年信息處理技術(shù)員教程
- 稽核管理培訓
- 電梯曳引機生銹處理方案
- 電力電纜故障分析報告
- 中國電信網(wǎng)絡(luò)資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術(shù)試卷試題真題(答案詳解)
- 《品牌形象設(shè)計》課件
- 倉庫管理基礎(chǔ)知識培訓課件1
評論
0/150
提交評論