版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動(dòng),記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.2.設(shè)一個(gè)正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點(diǎn)出發(fā),每次只沿著棱爬行并爬到另一個(gè)頂點(diǎn),算一次爬行,若它選擇三個(gè)方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.3.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.4.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.5.年某省將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.6.設(shè)為虛數(shù)單位,復(fù)數(shù),則實(shí)數(shù)的值是()A.1 B.-1 C.0 D.27.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.8.若均為任意實(shí)數(shù),且,則的最小值為()A. B. C. D.9.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米10.斜率為1的直線l與橢圓相交于A、B兩點(diǎn),則的最大值為A.2 B. C. D.11.過拋物線的焦點(diǎn)作直線與拋物線在第一象限交于點(diǎn)A,與準(zhǔn)線在第三象限交于點(diǎn)B,過點(diǎn)作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.12.函數(shù)的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個(gè)不等式應(yīng)該為__________.14.在平行四邊形中,已知,,,若,,則____________.15.已知實(shí)數(shù)滿約束條件,則的最大值為___________.16.設(shè)函數(shù),當(dāng)時(shí),記最大值為,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.18.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍19.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過且傾斜角為的直線與交于點(diǎn),與交于另一點(diǎn),若,求的取值范圍.20.(12分)如圖,四邊形為菱形,為與的交點(diǎn),平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.21.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對于任意,有且僅有一個(gè)零點(diǎn).22.(10分)某商場舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.2、D【解析】
由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據(jù)求數(shù)列的通項(xiàng)知識可得選項(xiàng).【詳解】由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當(dāng)時(shí),,故選:D.【點(diǎn)睛】本題考查幾何體中的概率問題,關(guān)鍵在于運(yùn)用遞推的知識,得出相鄰的項(xiàng)的關(guān)系,這是常用的方法,屬于難度題.3、A【解析】
構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時(shí),,所以,所以.由得,所以,故不等式的解集為.故選:A【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.4、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.5、B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.6、A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算化簡,由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運(yùn)算化簡可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.7、D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.8、D【解析】
該題可以看做是圓上的動(dòng)點(diǎn)到曲線上的動(dòng)點(diǎn)的距離的平方的最小值問題,可以轉(zhuǎn)化為圓心到曲線上的動(dòng)點(diǎn)的距離減去半徑的平方的最值問題,結(jié)合圖形,可以斷定那個(gè)點(diǎn)應(yīng)該滿足與圓心的連線與曲線在該點(diǎn)的切線垂直的問題來解決,從而求得切點(diǎn)坐標(biāo),即滿足條件的點(diǎn),代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應(yīng)為曲線上的點(diǎn)與以為圓心,以為半徑的圓上的點(diǎn)的距離的平方的最小值,可以求曲線上的點(diǎn)與圓心的距離的最小值,在曲線上取一點(diǎn),曲線有在點(diǎn)M處的切線的斜率為,從而有,即,整理得,解得,所以點(diǎn)滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點(diǎn)睛】本題考查函數(shù)在一點(diǎn)處切線斜率的應(yīng)用,考查圓的程,兩條直線垂直的斜率關(guān)系,屬中檔題.9、D【解析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.10、C【解析】
設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點(diǎn)睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問題的突破口.11、C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作.由拋物線定義知,所以,,,,所以.故選:C【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題12、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個(gè)不等式,,則有,對于第二個(gè)不等式,,則有,對于第三個(gè)不等式,,則有,依此類推:第個(gè)不等式為:,故答案為.【點(diǎn)睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.14、【解析】
設(shè),則,得到,,利用向量的數(shù)量積的運(yùn)算,即可求解.【詳解】由題意,如圖所示,設(shè),則,又由,,所以為的中點(diǎn),為的三等分點(diǎn),則,,所以.【點(diǎn)睛】本題主要考查了向量的共線定理以及向量的數(shù)量積的運(yùn)算,其中解答中熟記向量的線性運(yùn)算法則,以及向量的共線定理和向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.15、8【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移計(jì)算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標(biāo)函數(shù)表示直線在軸上的截距,由圖可知當(dāng)經(jīng)過點(diǎn)時(shí)截距最大,故的最大值為8.故答案為:.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.16、【解析】
易知,設(shè),,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時(shí),,所以單調(diào)遞減令,當(dāng)時(shí),,所以單調(diào)遞增所以當(dāng)時(shí),,,則則,即故答案為:.【點(diǎn)睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個(gè)不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點(diǎn)睛】本題考查絕對值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.18、(1)(2)【解析】
(1)零點(diǎn)分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時(shí),,解得;若時(shí),,解得;若時(shí),,解得;故不等式的解集為.(2)由,有,得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對值不等式的解法以及不等式恒成立問題,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.19、(1);(2)【解析】
(1)直接利用轉(zhuǎn)換公式,把參數(shù)方程,直角坐標(biāo)方程與極坐標(biāo)方程進(jìn)行轉(zhuǎn)化;(2)利用極坐標(biāo)方程將轉(zhuǎn)化為三角函數(shù)求解即可.【詳解】(1)因?yàn)椋缘钠胀ǚ匠虨?,又,,,的極坐標(biāo)方程為,的方程即為,對應(yīng)極坐標(biāo)方程為.(2)由己知設(shè),,則,,所以,又,,當(dāng),即時(shí),取得最小值;當(dāng),即時(shí),取得最大值.所以,的取值范圍為.【點(diǎn)睛】本題主要考查了直角坐標(biāo)方程,參數(shù)方程與極坐標(biāo)方程的互化,三角函數(shù)的值域求解等知識,考查了學(xué)生的運(yùn)算求解能力.20、(1)證明見解析;(2)1【解析】
(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè),分別求得,和的長,運(yùn)用三棱錐的體積公式,計(jì)算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設(shè),在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點(diǎn)睛】本題考查面面垂直的判定,注意運(yùn)用線面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡運(yùn)算能力和推理能力,意在考查學(xué)生對這些知識的理解掌握水平.21、(1)(2)證明見解析【解析】
(1)對函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年經(jīng)營權(quán)移交協(xié)議參考樣式
- 2024食品零售商副食供應(yīng)協(xié)議范本
- 2024年承諾書協(xié)議模板
- 2024年專業(yè)混凝土加工服務(wù)協(xié)議模板
- 2024年高端定制瓶裝水訂購協(xié)議
- 2024年二手挖掘機(jī)交易協(xié)議2
- 2024年期品牌雙經(jīng)銷商協(xié)議規(guī)范
- 2024年裝修項(xiàng)目合作框架協(xié)議樣例
- DB11∕T 1707-2019 有軌電車工程設(shè)計(jì)規(guī)范
- 2024年度線上線下推廣協(xié)作協(xié)議
- 各單元測試卷(仁愛湘教版初一上)七上試卷
- 1.3地球的圈層結(jié)構(gòu)課件高一地理
- 網(wǎng)絡(luò)安全服務(wù)項(xiàng)目服務(wù)質(zhì)量保障措施(實(shí)施方案)
- 高考作文等級評分標(biāo)準(zhǔn)
- 車輛制造工藝學(xué)
- 香料香精概述課件
- 出納崗位年終總結(jié)
- 《華住酒店集團(tuán)》課件
- 幼兒人工智能科普知識講座
- 反洗錢盡職調(diào)查報(bào)告
- 換熱站運(yùn)行培訓(xùn)課件
評論
0/150
提交評論