2022-2023學(xué)年-度河北省正定縣九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2022-2023學(xué)年-度河北省正定縣九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2022-2023學(xué)年-度河北省正定縣九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2022-2023學(xué)年-度河北省正定縣九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2022-2023學(xué)年-度河北省正定縣九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,中,,于,平分,且于,與相交于點,于,交于,下列結(jié)論:①;②;③;④.其中正確的是()A.①② B.①③ C.①②③ D.①②③④2.已知△ABC,D,E分別在AB,AC邊上,且DE∥BC,AD=2,DB=3,△ADE面積是4則四邊形DBCE的面積是()A.6 B.9 C.21 D.253.若銳角α滿足cosα<且tanα<,則α的范圍是()A.30°<α<45° B.45°<α<60°C.60°<α<90° D.30°<α<60°4.某工廠一月份生產(chǎn)機器100臺,計劃二、三月份共生產(chǎn)機器240臺,設(shè)二、三月份的平均增長率為x,則根據(jù)題意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=2405.在Rt△ABC中,∠C=900,AC=4,AB=5,則sinB的值是()A. B. C. D.6.國家實施“精準(zhǔn)扶貧”政策以來,很多貧困人口走向了致富的道路.永州市2016年底大約有貧困人口13萬人,通過社會各界的努力,2018年底貧困人口減少至1萬人.設(shè)2016年底至2018年底該地區(qū)貧困人口的年平均下降率為,根據(jù)題意列方程得()A. B. C. D.7.下列幾何體的三視圖相同的是(

)A.圓柱

B.球

C.圓錐

D.長方體8.如圖,點A,B,C,D四個點均在⊙O上,∠A=70°,則∠C為()A.35° B.70° C.110° D.120°9.按如下方法,將△ABC的三邊縮小到原來的,如圖,任取一點O,連結(jié)AO,BO,CO,并取它們的中點D、E、F,得△DEF;則下列說法錯誤的是()A.點O為位似中心且位似比為1:2B.△ABC與△DEF是位似圖形C.△ABC與△DEF是相似圖形D.△ABC與△DEF的面積之比為4:110.某單行道路的路口,只能直行或右轉(zhuǎn),任意一輛車通過路口時直行或右轉(zhuǎn)的概率相同.有3輛車通過路口.恰好有2輛車直行的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果MN=,那么BC=____________.12.已知,則=__________.13.如圖,在矩形中,是上的點,點在上,要使與相似,需添加的一個條件是_______(填一個即可).14.拋物線y=﹣(x+)2﹣3的頂點坐標(biāo)是_____.15.如圖1表示一個時鐘的鐘面垂直固定于水平桌面上,其中分針上有一點,當(dāng)鐘面顯示點分時,分針垂直與桌面,點距離桌面的高度為公分,若此鐘面顯示點分時,點距桌面的高度為公分,如圖2,鐘面顯示點分時,點距桌面的高度_________________.16.如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為1:的坡面AD走了200米到D處,此時在D處測得山頂B的仰角為60°,則山高BC=_____米(結(jié)果保留根號).17.若正多邊形的每一個內(nèi)角為,則這個正多邊形的邊數(shù)是__________.18.在平面直角坐標(biāo)系中,已知點,以原點為位似中心,相似比為.把縮小,則點的對應(yīng)點的坐標(biāo)分別是_____,_____.三、解答題(共66分)19.(10分)某食品廠生產(chǎn)一種半成品食材,成本為2元/千克,每天的產(chǎn)量P(百千克)與銷售價格x(元/千克)滿足函數(shù)關(guān)系式p=x+1.從市場反饋的信息發(fā)現(xiàn),該食材每天的市場需求量q(百千克)與銷售價格x(元/千克)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:銷售價格x(元/千克)24……10市場需求量q(百千克)1210……4已知按物價部門規(guī)定銷售價格x不低于2元/千克且不高于10元/千克,(1)直接寫出q與x的函數(shù)關(guān)系式,并注明自變量x的取值范圍;(2)當(dāng)每天的產(chǎn)量小于或等于市場需求量時,這種食材能全部售出;當(dāng)每天的產(chǎn)量大于市場需求量時,只能售出市場需求的量,而剩余的食材由于保質(zhì)期短作廢棄處理;①當(dāng)每天的食材能全部售出時,求x的取值范圍;②求廠家每天獲得的利潤y(百元)與銷售價格x的函數(shù)關(guān)系式;(3)在(2)的條件下,當(dāng)x為多少時,y有最大值,并求出最大利潤.20.(6分)如圖,矩形紙片ABCD,將△AMP和△BPQ分別沿PM和PQ折疊(AP>AM),點A和點B都與點E重合;再將△CQD沿DQ折疊,點C落在線段EQ上點F處.(1)判斷△AMP,△BPQ,△CQD和△FDM中有哪幾對相似三角形?(不需說明理由)(2)如果AM=1,sin∠DMF=,求AB的長.21.(6分)如圖,為等腰三角形,,是底邊的中點,與腰相切于點.(1)求證:與相切;(2)已知,,求的半徑.22.(8分)為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用本庫的岸堤(岸堤足夠長)為一邊,用總長為160m的圍網(wǎng)在水庫中圍成了如圖所示的①、②、③三塊矩形區(qū)域網(wǎng)箱,而且這三塊矩形區(qū)域的面積相等,設(shè)BE的長度為xm,矩形區(qū)域ABCD的面積為ym1.(1)則AE=m,BC=m;(用含字母x的代數(shù)式表示)(1)求矩形區(qū)域ABCD的面積y的最大值.23.(8分)某果園有100棵桃樹,一棵桃樹平均結(jié)1000個桃子,現(xiàn)準(zhǔn)備多種一些桃樹以提高產(chǎn)量,試驗發(fā)現(xiàn),每多種一棵桃樹,每棵樹的產(chǎn)量就會減少2個,但多種的桃樹不能超過100棵,如果要使產(chǎn)量增加15.2%,那么應(yīng)多種多少棵桃樹?24.(8分)計算:2cos30°+(π﹣3.14)0﹣25.(10分)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).(1)如圖,當(dāng)∠APB=45°時,求AB及PD的長;(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大?。?6.(10分)如圖,在下列(邊長為1)的網(wǎng)格中,已知的三個頂點,,在格點上,請分別按不同要求在網(wǎng)格中描出一個點,并寫出點的坐標(biāo).(1)經(jīng)過,,三點有一條拋物線,請在圖1中描出點,使點落在格點上,同時也落在這條拋物線上;則點的坐標(biāo)為______;(2)經(jīng)過,,三點有一個圓,請用無刻度的直尺在圖2中畫出圓心;則點的坐標(biāo)為______.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,從而得出DF=AD,BF=AC.則CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因為BF=AC所以CE=AC=BF;連接CG.因為△BCD是等腰直角三角形,即BD=CD.又因為DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜邊,CE是直角邊,所以CE<CG.即AE<BG.【詳解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正確;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正確;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正確;連接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜邊,CE是直角邊,∴CE<CG.∵CE=AE,∴AE<BG.故④錯誤.故選C.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.在復(fù)雜的圖形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并應(yīng)用此點.2、C【解析】∵DE//BC,∴△ADE∽△ABC,∴,∵AD=2,BD=3,AB=AD+BD,∴,∵S△ADE=4,∴S△ABC=25,∴S四邊形DBCE=S△ABC-S△ADE=25-4=21,故選C.3、B【詳解】∵α是銳角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是銳角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故選B.【點睛】本題主要考查了余弦函數(shù)、正切函數(shù)的增減性與特殊角的余弦函數(shù)、正切函數(shù)值,熟記特殊角的三角函數(shù)值和了解銳角三角函數(shù)的增減性是解題的關(guān)鍵4、B【分析】設(shè)二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)二月份的生產(chǎn)量+三月份的生產(chǎn)量=1臺,列出方程即可.【詳解】設(shè)二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)題意,得100(1+x)+100(1+x)2=1.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,設(shè)出未知數(shù),正確找出等量關(guān)系是解決問題的關(guān)鍵.5、D【解析】試題分析:正弦的定義:正弦由題意得,故選D.考點:銳角三角函數(shù)的定義點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握正弦的定義,即可完成.6、B【分析】根據(jù)等量關(guān)系:2016年貧困人口×(1-下降率=2018年貧困人口,把相關(guān)數(shù)值代入即可.【詳解】設(shè)這兩年全省貧困人口的年平均下降率為,根據(jù)題意得:,故選:B.【點睛】本題考查由實際問題抽象出一元二次方程,得到2年內(nèi)變化情況的等量關(guān)系是解決本題的關(guān)鍵.7、B【解析】試題分析:選項A、圓柱的三視圖,如圖所示,不合題意;選項B、球的三視圖,如圖所示,符合題意;選項C、圓錐的三視圖,如圖所示,不合題意;選項D、長方體的三視圖,如圖所示,不合題意;.故答案選B.考點:簡單幾何體的三視圖.8、C【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)即可求出∠C.【詳解】∵四邊形ABCD是圓內(nèi)接四邊形,∴∠C=180°﹣∠A=110°,故選:C.【點睛】此題考查的是圓的內(nèi)接四邊形,掌握圓內(nèi)接四邊形的性質(zhì):對角互補,是解決此題的關(guān)鍵.9、A【分析】根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】∵如圖,任取一點O,連結(jié)AO,BO,CO,并取它們的中點D、E、F,得△DEF,∴將△ABC的三邊縮小到原來的,此時點O為位似中心且△ABC與△DEF的位似比為2:1,故選項A說法錯誤,符合題意;△ABC與△DEF是位似圖形,故選項B說法正確,不合題意;△ABC與△DEF是相似圖形,故選項C說法正確,不合題意;△ABC與△DEF的面積之比為4:1,故選項D說法正確,不合題意;故選:A.【點睛】此題主要考查了位似圖形的性質(zhì),正確的記憶位似圖形性質(zhì)是解決問題的關(guān)鍵.10、B【分析】用表示直行、表示右轉(zhuǎn),畫出樹狀圖表示出所有的種等可能的結(jié)果,其中恰好有輛車直行占種,然后根據(jù)概率公式求解即可.【詳解】解:若用表示直行、表示右轉(zhuǎn),則畫樹狀圖如下:∵共有種等可能的結(jié)果,其中恰好有輛車直行占種∴(恰好輛車直行).故選:B【點睛】此題考查的是用樹狀圖法求概率.注意樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合兩步或兩步以上完成的事件;注意概率等于所求情況數(shù)與總情況數(shù)之比.二、填空題(每小題3分,共24分)11、2【分析】根據(jù)垂徑定理得出AN=CN,AM=BM,根據(jù)三角形的中位線性質(zhì)得出BC=2MN,即可得出答案.【詳解】解:∵OM⊥AB,ON⊥AC,OM過O,ON過O,

∴AN=CN,AM=BM,

∴BC=2MN,

∵MN=,∴BC=2,故答案為:2.【點睛】本題考查了垂徑定理和三角形的中位線性質(zhì),能熟記知識點的內(nèi)容是解此題的關(guān)鍵,注意:垂直于弦的直徑平分弦.12、【分析】根據(jù)比例的性質(zhì),化簡求值即可.【詳解】故答案為:.【點睛】本題主要考察比例的性質(zhì),解題關(guān)鍵是根據(jù)比例的性質(zhì)化簡求值.13、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一個即可)【分析】根據(jù)相似三角形的判定解答即可.【詳解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案為:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【點睛】此題考查相似三角形的判定,關(guān)鍵是根據(jù)相似三角形的判定方法解答.14、(﹣,﹣3)【分析】根據(jù)y=a(x﹣h)2+k的頂點是(h,k),可得答案.【詳解】解:y=﹣(x+)2﹣3的頂點坐標(biāo)是(﹣,﹣3),故答案為:(﹣,﹣3).【點睛】本題考查了拋物線頂點坐標(biāo)的問題,掌握拋物線頂點式解析式是解題的關(guān)鍵.15、公分【分析】根據(jù)當(dāng)鐘面顯示3點30分時,分針垂直于桌面,A點距桌面的高度為10公分得出AB=10,進而得出A1C=16,求出OA2=OA=6,過A2作A2D⊥OA1從而得出A2D=3即可.【詳解】如圖:可得(公分)∵AB=10(公分),∴(公分)過A2作A2D⊥OA1,∵(公分)∴鐘面顯示點分時,點距桌面的高度為:(公分).故答案為:19公分.【點睛】此題主要考查了解直角三角形以及鐘面角,得出∠A2OA1=30°,進而得出A2D=3,是解決問題的關(guān)鍵.16、300+100【分析】作DF⊥AC于F.解直角三角形分別求出BE、EC即可解決問題.【詳解】作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四邊形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD?sin∠BDE=200×=300(米),∴BC=BE+EC=300+100(米);故答案為:300+100.【點睛】本題考查解直角三角形的應(yīng)用仰角俯角問題,坡度坡角問題等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題17、八(或8)【解析】分析:根據(jù)正多邊形的每一個內(nèi)角為,求出正多邊形的每一個外角,根據(jù)多邊形的外角和,即可求出正多邊形的邊數(shù).詳解:根據(jù)正多邊形的每一個內(nèi)角為,正多邊形的每一個外角為:多邊形的邊數(shù)為:故答案為八.點睛:考查多邊形的外角和,掌握多邊形的外角和是解題的關(guān)鍵.18、(-1,2)或(1,-2);(-3,-1)或(3,1)【分析】利用以原點為位似中心,相似比為k,位似圖形對應(yīng)點的坐標(biāo)的比等于k或?k,分別把A,B點的橫縱坐標(biāo)分別乘以或?即可得到點B′的坐標(biāo).【詳解】∵以原點O為位似中心,相似比為,把△ABO縮小,∴的對應(yīng)點A′的坐標(biāo)是(-1,2)或(1,-2),點B(?9,?3)的對應(yīng)點B′的坐標(biāo)是(?3,?1)或(3,1),故答案為:(-1,2)或(1,-2);(-3,-1)或(3,1).【點睛】本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或?k.三、解答題(共66分)19、(1)q=﹣x+14,其中2≤x≤10;(2)①2≤x≤4,②y=;(3)x=時取最大值,最大利潤百元.【分析】(1)根據(jù)表格數(shù)據(jù),設(shè)q與x的函數(shù)關(guān)系式為:q=kx+b,待定系數(shù)法即可求得;(2)①根據(jù)題意,p≤q,計算即可求得x的取值范圍;②根據(jù)銷售利潤=銷售量(售價-進價),列出廠家每天獲得的利潤(百元)與銷售價格的函數(shù)關(guān)系;(3)根據(jù)(2)中的條件分情況討論即可.【詳解】(1)由表格的數(shù)據(jù),設(shè)q與x的函數(shù)關(guān)系式為:q=kx+b根據(jù)表格的數(shù)據(jù)得,解得,故q與x的函數(shù)關(guān)系式為:q=﹣x+14,其中2≤x≤10(2)①當(dāng)每天的半成品食材能全部售出時,有p≤q即x+1≤﹣x+14,解得x≤4又2≤x≤10,所以此時2≤x≤4②由①可知,當(dāng)2≤x≤4時,y=(x﹣2)p=(x﹣2)(x+1)=x2+7x﹣16當(dāng)4<x≤10時,y=(x﹣2)q﹣2(p﹣q)=(x﹣2)(﹣x+14)﹣2[x+1﹣(﹣x+14)]=﹣x2+13x﹣16即有y=(3)當(dāng)2≤x≤4時,y=x2+7x﹣16的對稱軸為x==﹣7∴當(dāng)2≤x≤4時,隨x的增大而增大∴x=4時有最大值,y=20當(dāng)4<x≤10時y=﹣x2+13x﹣16=﹣(x﹣)2+,∵﹣1<0,>4∴x=時取最大值即此時y有最大利潤百元.【點睛】本題考查一次函數(shù)和二次函數(shù)實際應(yīng)用中的利潤問題,屬綜合中檔題.20、(1)△AMP∽△BPQ∽△CQD;(2)AB=6.【解析】根據(jù)題意得出三對相似三角形;設(shè)AP=x,有折疊關(guān)系可得:BP=AP=EP=x,AB=DC=2x,AM=1,根據(jù)△AMP∽△BPQ得:即,根據(jù)由△AMP∽△CQD得:即CQ=2,從而得出AD=BC=BQ+CQ=+2,MD=AD-AM=+2-1=+1,根據(jù)Rt△FDM中∠DMF的正弦值得出x的值,從而求出AB的值.【詳解】(1)有三對相似三角形,即△AMP∽△BPQ∽△CQD(2)設(shè)AP=x,有折疊關(guān)系可得:BP=AP=EP=xAB=DC=2xAM=1由△AMP∽△BPQ得:即由△AMP∽△CQD得:即CQ=2AD=BC=BQ+CQ=+2MD=AD-AM=+2-1=+1又∵在Rt△FDM中,sin∠DMF=DF=DC=2x∴解得:x=3或x=(不合題意,舍去)∴AB=2x=6.考點:相似三角形的應(yīng)用、三角函數(shù)、折疊圖形的性質(zhì).21、(1)詳見解析;(2)⊙O的半徑為.【分析】(1)欲證AC與圓O相切,只要證明圓心O到AC的距離等于圓的半徑即可,即連接OD,過點O作OE⊥AC于E點,證明OE=OD.(2)根據(jù)已知可求OA的長,再由等積關(guān)系求出OD的長.【詳解】證明:(1)連結(jié),過點作于點,∵切于,∴,∴,又∵是的中點,∴,∵,∴,∴,∴,即是的半徑,∴與相切.(2)連接,則,又為BC的中點,∴,∴在中,,∴由等積關(guān)系得:,∴,即O的半徑為.【點睛】本題考查的是圓的切線的性質(zhì)和判定,欲證切線,作垂直O(jiān)E⊥AC于E,證半徑OE=OD;還考查了利用面積相等來求OD.22、(1)1x,(80﹣4x);(1)1100m1.【分析】(1)根據(jù)三個矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的1倍,可得出AE=1BE,設(shè)BE=x,則有AE=1x,BC=80﹣4x;(1)利用二次函數(shù)的性質(zhì)求出y的最大值,以及此時x的值即可.【詳解】(1)設(shè)BE的長度為xm,則AE=1xm,BC=(80﹣4x)m,故答案為:1x,(80﹣4x);(1)根據(jù)題意得:y=3x(80﹣4x)=﹣11x1+140x=﹣11(x﹣10)1+1100,因為﹣11,所以當(dāng)x=10時,y有最大值為1100.答:矩形區(qū)域ABCD的面積的最大值為1100m1.【點睛】本題考查二次函數(shù)的性質(zhì)和應(yīng)用,解題的關(guān)鍵是掌握二次函數(shù)的性質(zhì)和應(yīng)用.23、20【分析】每多種一棵桃樹,每棵桃樹的產(chǎn)量就會減少2個,所以多種棵樹每棵桃樹的產(chǎn)量就會減少個(即是平均產(chǎn)個),桃樹的總共有棵,所以總產(chǎn)量是個.要使產(chǎn)量增加,達到個.【詳解】解:設(shè)應(yīng)多種棵桃樹,根據(jù)題意,得整理方程,得解得,,∵多種的桃樹不能超過100棵,∴(舍去)∴答:應(yīng)多種20棵桃樹?!军c睛】本題考查一元二次方程的應(yīng)用,解題關(guān)鍵在于搞懂題意去列出方程即可.24、.【分析】分別根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的運算法則和二次根式的性質(zhì)計算各項,再合并即得結(jié)果.【詳解】解:原式=.【點睛】本題考查了特殊角的三角函數(shù)值、零指數(shù)冪和二次根式的性質(zhì)等知識,屬于應(yīng)知應(yīng)會題型,熟練掌握基本知識是關(guān)鍵.25、(1),;(2)的最大值為1【分析】(1)作輔助線,過點A作AE⊥PB于點E,在Rt△PAE中,已知∠APE,AP的值,根據(jù)三角函數(shù)可將AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根據(jù)勾股定理可將AB的值求出;

求PD的值有兩種解法,解法一:可將△PAD繞點A順時針旋轉(zhuǎn)90°得到△P'AB,可得△PAD≌△P'AB,求PD長即為求P′B的長,在Rt△AP′P中,可將PP′的值求出,在Rt△PP′B中,根據(jù)勾股定理可將P′B的值求出;

解法二:過點P作AB的平行線,與DA的延長線交于F,交PB于G,在Rt△AEG中,可求出AG,EG的長,進而可知PG的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論