2022-2023學(xué)年甘肅省蘭州天慶中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
2022-2023學(xué)年甘肅省蘭州天慶中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
2022-2023學(xué)年甘肅省蘭州天慶中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
2022-2023學(xué)年甘肅省蘭州天慶中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
2022-2023學(xué)年甘肅省蘭州天慶中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.5 B.2.8 C.3 D.3.22.如圖,某水庫堤壩橫斷面迎水坡AB的坡比是1:,堤壩高BC=50m,則應(yīng)水坡面AB的長度是()A.100m B.100m C.150m D.50m3.某廠2017年產(chǎn)值3500萬元,2019年增加到5300萬元.設(shè)平均每年增長率為,則下面所列方程正確的是()A. B.C. D.4.如圖,二次函數(shù)y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,1)與(0,3)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y1)是函數(shù)圖象上的兩點,則y1<y1;④﹣<a<﹣;⑤c-3a>0其中正確結(jié)論有()A.1個 B.3個 C.4個 D.5個5.將分別標(biāo)有“走”“向”“偉”“大”“復(fù)”“興”漢字的小球裝在一個不透明的口袋中,這些球除漢字外完全相同,每次摸球前先攪勻,隨機(jī)摸出一球,不放回,再隨機(jī)摸出一球,兩次摸出的球上的漢字組成“復(fù)興”的概率是()A. B. C. D.6.點A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函數(shù)y=﹣的圖象上,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37.如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,已知∠BOD=110°,則∠BCD的度數(shù)為()A.55° B.70° C.110° D.125°8.如圖為二次函數(shù)的圖象,在下列說法中:①;②方程的根是③;④當(dāng)時,隨的增大而增大;⑤;⑥,正確的說法有()A. B. C. D.9.如圖,點A、B、C是⊙0上的三點,若∠OBC=50°,則∠A的度數(shù)是()A.40° B.50° C.80° D.100°10.如圖,點()是反比例函數(shù)上的動點,過分別作軸,軸的垂線,垂足分別為,.隨著的增大,四邊形的面積()A.增大 B.減小 C.不確定 D.不變11.甲、乙兩位同學(xué)在一次用頻率估計概率的試驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,給出的統(tǒng)計圖如圖所示,則符合這一結(jié)果的試驗可能是()A.?dāng)S一枚硬幣,出現(xiàn)正面朝上的概率B.?dāng)S一枚硬幣,出現(xiàn)反面朝上的概率C.?dāng)S一枚骰子,出現(xiàn)點的概率D.從只有顏色不同的兩個紅球和一個黃球中,隨機(jī)取出一個球是黃球的概率12.矩形ABCD中,AB=10,,點P在邊AB上,且BP:AP=4:1,如果⊙P是以點P為圓心,PD長為半徑的圓,那么下列結(jié)論正確的是()A.點B、C均在⊙P外 B.點B在⊙P外,點C在⊙P內(nèi)C.點B在⊙P內(nèi),點C在⊙P外 D.點B、C均在⊙P內(nèi)二、填空題(每題4分,共24分)13.小天想要計算一組數(shù)據(jù)92,90,94,86,99,85的方差S02,在計算平均數(shù)的過程中,將這組數(shù)據(jù)中的每一個數(shù)都減去90,得到一組新數(shù)據(jù)2,0,4,﹣4,9,﹣5,記這組新數(shù)據(jù)的方差為S12,則S12__S02(填“>”,“=”或”<”)14.將拋物線先向上平移3個單位,再向右平移2個單位后得到的新拋物線對應(yīng)的函數(shù)表達(dá)式為______.15.若m是關(guān)于x的方程x2-2x-3=0的解,則代數(shù)式4m-2m2+2的值是______.16.如圖,在△ABC中,∠A=90°,AB=AC=2,以AB為直徑的圓交BC于點D,求圖中陰影部分的面積為_____.17.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號).18.如圖,在平面直角坐標(biāo)系中,菱形的邊在軸上,與交于點(4,2),反比例函數(shù)的圖象經(jīng)過點.若將菱形向左平移個單位,使點落在該反比例函數(shù)圖象上,則的值為_____________.三、解答題(共78分)19.(8分)某校一課外活動小組為了了解學(xué)生最喜歡的球類運動況,隨機(jī)抽查了本校九年級的200名學(xué)生,調(diào)查的結(jié)果如圖所示,請根據(jù)該扇形統(tǒng)計圖解答以下問題:(1)圖中的值是________;(2)被查的200名生中最喜歡球運動的學(xué)生有________人;(3)若由3名最喜歡籃球運動的學(xué)生(記為),1名最喜歡乒乓球運動的學(xué)生(記為),1名最喜歡足球運動的學(xué)生(記為)組隊外出參加一次聯(lián)誼活動.欲從中選出2人擔(dān)任組長(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運動的學(xué)生的概率.20.(8分)如圖所示,是的直徑,其半徑為,扇形的面積為.(1)求的度數(shù);(2)求的長度.21.(8分)先閱讀下列材料,然后解后面的問題.材料:一個三位自然數(shù)(百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c),若滿足a+c=b,則稱這個三位數(shù)為“歡喜數(shù)”,并規(guī)定F()=ac.如374,因為它的百位上數(shù)字3與個位數(shù)字4之和等于十位上的數(shù)字7,所以374是“歡喜數(shù)”,∴F(374)=3×4=1.(1)對于“歡喜數(shù)”,若滿足b能被9整除,求證:“歡喜數(shù)”能被99整除;(2)已知有兩個十位數(shù)字相同的“歡喜數(shù)”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.22.(10分)為全面貫徹黨的教育方針,堅持“健康第一的教育理念,促進(jìn)學(xué)生健康成長,提高體質(zhì)健康水平,成都市調(diào)整體育中考實施方案:分值增加至60,男1000(女80米)必考,足球、籃球、排球“三選一”……從2019年秋季新入學(xué)的七年級起開始實施,某1學(xué)為了解七年級學(xué)生對三大球類運動的喜愛情況,從七年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖。請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)求參與調(diào)查的學(xué)生中,喜愛排球運動的學(xué)生人數(shù),并補全條形圖(2)若該中學(xué)七年級共有400名學(xué)生,請你估計該中學(xué)七年級學(xué)生中喜愛籃球運動的學(xué)生有多少名?(3)若從喜愛足球運動的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.23.(10分)用適當(dāng)?shù)姆椒ń庀铝幸辉畏匠蹋海?);(2).24.(10分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.(1)求證:AB=AF;(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.25.(12分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(-3,1),B(-1,3),C(0,1).(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A1B1C1,并寫出A1,B1的坐標(biāo);(2)平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(-5,-3),畫出平移后的△A2B2C2,并寫出B2,C2的坐標(biāo);(3)若△A2B2C2和△A1B1C1關(guān)于點P中心對稱,請直接寫出對稱中心P的坐標(biāo).26.已知關(guān)于x的方程x2﹣(m+2)x+2m=1.(1)若該方程的一個根為x=1,求m的值;(2)求證:不論m取何實數(shù),該方程總有兩個實數(shù)根.

參考答案一、選擇題(每題4分,共48分)1、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.【點睛】本題主要考查圓周角定理的推論及相似三角形的判定及性質(zhì),掌握圓周角定理的推論及相似三角形的性質(zhì)是解題的關(guān)鍵.2、A【解析】∵堤壩橫斷面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故選A3、D【分析】由題意設(shè)每年的增長率為x,那么第一年的產(chǎn)值為3500(1+x)萬元,第二年的產(chǎn)值3500(1+x)(1+x)萬元,然后根據(jù)今年上升到5300萬元即可列出方程.【詳解】解:設(shè)每年的增長率為x,依題意得3500(1+x)(1+x)=5300,即.故選:D.【點睛】本題考查列出解決問題的方程,解題的關(guān)鍵是正確理解“利潤每月平均增長率為x”的含義以及找到題目中的等量關(guān)系.4、D【分析】根據(jù)二次函數(shù)的圖項與系數(shù)的關(guān)系即可求出答案.【詳解】①∵圖像開口向下,,∵與y軸的交點B在(0,1)與(0,3)之間,,∵對稱軸為x=1,,∴b=-4a,∴b>0,∴abc<0,故①正確;②∵圖象與x軸交于點A(-1,0),對稱軸為直線x=1,∴圖像與x軸的另一個交點為(5,0),∴根據(jù)圖像可以看出,當(dāng)x=3時,函數(shù)值y=9a+3b+c>0,故②正確;③∵點,∴點M到對稱軸的距離為,點N到對稱軸的距離為,∴點M到對稱軸的距離大于點N到對稱軸的距離,∴,故③正確;④根據(jù)圖像與x軸的交點坐標(biāo)可以設(shè)函數(shù)的關(guān)系式為:y=a(x-5)(x+1),把x=0代入得y=-5a,∵圖像與y軸的交點B在(0,1)與(0,3)之間,,解不等式組得,故④正確;⑤∵對稱軸為x=1,∴b=-4a,當(dāng)x=1時,y=a+b+c=a-4a+c=c-3a>0,故⑤正確;綜上分析可知,正確的結(jié)論有5個,故D選項正確.故選D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax1+bx+c(a≠0)的圖象,當(dāng)a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側(cè),a與b異號,對稱軸在y軸的右側(cè);當(dāng)c>0,拋物線與y軸的交點在x軸的上方.5、B【分析】根據(jù)題意列表得出所有等情況數(shù)和兩次摸出的球上的漢字是“復(fù)”“興”的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有30種等情況數(shù),其中兩次摸出的球上的漢字是“復(fù)”“興”的有2種,則隨機(jī)摸出一球,兩次摸出的球上的漢字組成“復(fù)興”的概率是;故選:.【點睛】此題考查了樹狀圖法或列表法求概率.樹狀圖法適合兩步或兩步以上完成的事件;列表法適合兩步完成的事件,解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.6、C【解析】將x的值代入函數(shù)解析式中求出函數(shù)值y即可判斷.【詳解】當(dāng)x=-3時,y1=1,

當(dāng)x=-1時,y2=3,

當(dāng)x=1時,y3=-3,

∴y3<y1<y2

故選:C.【點睛】考查反比例函數(shù)圖象上的點的特征,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.7、D【分析】根據(jù)圓周角定理求出∠A,根據(jù)圓內(nèi)接四邊形的性質(zhì)計算即可.【詳解】由圓周角定理得,∠A=∠BOD=55°,∵四邊形ABCD為⊙O的內(nèi)接四邊形,∴∠BCD=180°?∠A=125°,故選:C.【點睛】此題考查圓周角定理及其推論,解題關(guān)鍵在于掌握圓內(nèi)接四邊形的性質(zhì).8、D【分析】根據(jù)拋物線開口向上得出a>1,根據(jù)拋物線和y軸的交點在y軸的負(fù)半軸上得出c<1,根據(jù)圖象與x軸的交點坐標(biāo)得出方程ax2+bx+c=1的根,把x=1代入y=ax2+bx+c求出a+b+c<1,根據(jù)拋物線的對稱軸和圖象得出當(dāng)x>1時,y隨x的增大而增大,2a=-b,根據(jù)圖象和x軸有兩個交點得出b2-4ac>1.【詳解】∵拋物線開口向上,∴a>1,∵拋物線和y軸的交點在y軸的負(fù)半軸上,∴c<1,∴ac<1,∴①正確;∵圖象與x軸的交點坐標(biāo)是(-1,1),(3,1),∴方程ax2+bx+c=1的根是x1=-1,x2=3,∴②正確;把x=1代入y=ax2+bx+c得:a+b+c<1,∴③錯誤;根據(jù)圖象可知:當(dāng)x>1時,y隨x的增大而增大,∴④正確;∵-=1,∴2a=-b,∴2a+b=1,不是2a-b=1,∴⑤錯誤;∵圖象和x軸有兩個交點,∴b2-4ac>1,∴⑥正確;正確的說法有:①②④⑥.故答案為:D.【點睛】本題考查了二次函數(shù)與系數(shù)的關(guān)系的應(yīng)用,主要考查學(xué)生對二次函數(shù)的圖象與系數(shù)的關(guān)系的理解和運用,同時也考查了學(xué)生觀察圖象的能力,本題是一道比較典型的題目,具有一定的代表性.9、A【分析】在等腰三角形OBC中求出∠BOC,繼而根據(jù)圓周角定理可求出∠A的度數(shù).【詳解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°;故選A.【點睛】本題考查在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.10、D【分析】由長方形的面積公式可得出四邊形的面積為mn,再根據(jù)點Q在反比例函數(shù)圖象上,可知,從而可判斷面積的變化情況.【詳解】∵點∴四邊形的面積為,∵點()是反比例函數(shù)上的動點∴四邊形的面積為定值,不會發(fā)生改變故選:D.【點睛】本題主要考查反比例函數(shù)比例系數(shù)的幾何意義,掌握反比例函數(shù)比例系數(shù)的幾何意義是解題的關(guān)鍵.11、D【分析】根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:A.擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項不符合題意;B.擲一枚硬幣,出現(xiàn)反面朝上的概率為,故此選項不符合題意;C.擲一枚骰子,出現(xiàn)點的概率為,故此選項不符合題意;D.從只有顏色不同的兩個紅球和一個黃球中,隨機(jī)取出一個球是黃球的概率為,故此選項符合題意;故選:D.【點睛】本題考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.同時此題在解答中要用到概率公式.12、A【分析】根據(jù)BP=4AP和AB的長度求得AP的長度,然后利用勾股定理求得圓P的半徑PD的長;根據(jù)點B、C到P點的距離判斷點P與圓的位置關(guān)系即可【詳解】根據(jù)題意畫出示意圖,連接PC,PD,如圖所示∵AB=10,點P在邊AB上,BP:AP=4:1∴AP=2,BP=8又∵AD=∴圓的半徑PD=PC=∵PB=8>6,PC=>6∴點B、C均在⊙P外故答案為:A【點睛】本題考查了點和圓的位置關(guān)系的判定,根據(jù)點和圓心之間的距離和半徑的大小關(guān)系作出判斷即可二、填空題(每題4分,共24分)13、=【分析】根據(jù)一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個非零常數(shù),那么這組數(shù)據(jù)的波動情況不變,即方差不變,即可得出答案.【詳解】∵一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上(或都減去)同一個常數(shù)后,它的平均數(shù)都加上(或都減去)這一個常數(shù),兩數(shù)進(jìn)行相減,方差不變,∴則S12=S1.故答案為:=.【點睛】本題考查方差的意義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立,關(guān)鍵是掌握一組數(shù)據(jù)都加上同一個非零常數(shù),方差不變.14、【分析】根據(jù)二次函數(shù)平移的特點即可求解.【詳解】將拋物線先向上平移3個單位,再向右平移2個單位后得到的新拋物線對應(yīng)的函數(shù)表達(dá)式為故答案為:.【點睛】此題主要考查二次函數(shù)的平移,解題的關(guān)鍵是熟知二次函數(shù)平移的特點.15、-1【分析】先由方程的解的含義,得出m2-2m-3=0,變形得m2-2m=3,再將要求的代數(shù)式提取公因式-2,然后將m2-2m=3代入,計算即可.【詳解】解:∵m是關(guān)于x的方程x2-2x-3=0的解,

∴m2-2m-3=0,

∴m2-2m=3,

∴1m-2m2+2

=-2(m2-2m)+2

=-2×3+2

=-1.

故答案為:-1.【點睛】本題考查了利用一元二次方程的解的含義在代數(shù)式求值中的應(yīng)用,明確一元二次方程的解的含義并將要求的代數(shù)式正確變形是解題的關(guān)鍵.16、1【分析】連接AD,由圖中的圖形關(guān)系看出陰影部分的面積可以簡化成一個三角形的面積,然后通過已知條件求出面積.【詳解】解:連接AD,

∵AB=BC=2,∠A=90°,∴∠C=∠B=45°,∴∠BAD=45°,∴BD=AD,∴BD=AD=,∴由BD,AD組成的兩個弓形面積相等,∴陰影部分的面積就等于△ABD的面積,∴S△ABD=AD?BD=××=1.故答案為:1.【點睛】本題考查的是扇形面積的計算,根據(jù)題意作出輔助線,構(gòu)造出等腰直角三角形是解答此題的關(guān)鍵.17、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質(zhì);2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質(zhì).18、1【分析】根據(jù)菱形的性質(zhì)得出CD=AD,BC∥OA,根據(jù)D

(4,2)和反比例函數(shù)的圖象經(jīng)過點D求出k=8,C點的縱坐標(biāo)是2×2=4,求出C的坐標(biāo),即可得出答案.【詳解】∵四邊形ABCO是菱形,∴CD=AD,BC∥OA,∵D

(4,2),反比例函數(shù)的圖象經(jīng)過點D,∴k=8,C點的縱坐標(biāo)是2×2=4,∴,把y=4代入得:x=2,∴n=3?2=1,∴向左平移1個單位長度,反比例函數(shù)能過C點,故答案為1.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標(biāo)特征,菱形的性質(zhì),坐標(biāo)與圖形變化-平移,數(shù)形結(jié)合思想是關(guān)鍵.三、解答題(共78分)19、(1)35;(2)190;(3)所有可能的情況見解析,.【分析】(1)考查了扇形圖的性質(zhì),根據(jù)所有小扇形的百分?jǐn)?shù)和為即可得;(2)根據(jù)扇形圖求出最喜歡球運動的學(xué)生人數(shù)對應(yīng)的百分比,從而即可得;(3)先列出所有可能的結(jié)果,再找出2人均為最喜歡籃球運動的學(xué)生的結(jié)果,最后利用概率公式求解即可.【詳解】(1)由題得:解得:故答案為:35;(2)最喜歡球運動的學(xué)生人數(shù)為(人)故答案為:190;(3)用表示3名最喜歡籃球運動的學(xué)生,B表示1名最喜歡乒乓球運動的學(xué)生,C表示1名喜歡足球運動的學(xué)生,則從5人中選出2人的所有可能的情況10種,即有,它們每一種出現(xiàn)的可能性相等選出的2人均是最喜歡籃球運動的學(xué)生的情況有3種,即則選出2人均是最喜歡籃球運動的學(xué)生的概率為.【點睛】本題考查了扇形統(tǒng)計圖的概念及性質(zhì)、利用列舉法求概率,較難的是(3),依據(jù)題意,正確列出事件的所有可能的結(jié)果是解題關(guān)鍵.20、(1)60°;(2)【分析】(1)根據(jù)扇形面積公式求圓心角的度數(shù)即可;(2)由第一問,求得∠BOC的度數(shù),然后利用弧長公式求解.【詳解】由扇形面積公式得:∴的長度為:【點睛】本題考查扇形面積和弧長的求法,熟練掌握公式正確進(jìn)行計算是本題的解題關(guān)鍵.21、(1)詳見解析;(2)99或2.【解析】(1)首先由題意可得a+c=b,將歡喜數(shù)展開,因為要證明“歡喜數(shù)”能被99整除,所以將展開式中100a拆成99a+a,這樣展開式中出現(xiàn)了a+c,將a+c用b替代,整理出最終結(jié)果即可;(2)首先設(shè)出兩個歡喜數(shù)m、n,表示出F(m)、F(n)代入F(m)﹣F(n)=3中,將式子變形分析得出最終結(jié)果即可.【詳解】(1)證明:∵為歡喜數(shù),∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“歡喜數(shù)”能被99整除;(2)設(shè)m=,n=(且a1>a2),∵F(m)﹣F(n)=a1?c1﹣a2?c2=a1?(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均為整數(shù),∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=2.∴若F(m)﹣F(n)=3,則m﹣n的值為99或2.【點睛】做此類閱讀理解類題目首先要充分理解題目,會運用因式分解將式子變形.22、(1)21,圖形見解析;(2)180;(3)【分析】(1)先根據(jù)足球人數(shù)及其百分比求得總?cè)藬?shù),再用總?cè)藬?shù)乘以排球人數(shù)占總?cè)藬?shù)的百分比可得排球人數(shù),即可補全圖形;(2)根據(jù)樣本估計總體,先求出喜愛籃球運動人數(shù)的百分比,然后用400乘以籃球人數(shù)占百分比,即可得到喜愛籃球運動人數(shù);(3)畫樹狀圖得出所有等可能的情況數(shù),找出1名男生和1名女生的情況數(shù),根據(jù)概率公式即可得出所求概率.【詳解】解:(1)(人),(人).所以,參與調(diào)查的學(xué)生中,喜愛排球運動的學(xué)生有21人.補全條形圖如下:(2)(人).所以,該中學(xué)七年級學(xué)生中,喜愛籃球運動的學(xué)生有180人.(3)共有12種等可能情況,(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),其中,1名男生和1名女生有8種.所以,抽到1名男生和1名女生的概率.【點睛】此題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及列表法與樹狀圖法,解題的關(guān)鍵是理解條形圖與扇形圖中數(shù)據(jù)間的關(guān)系.23、(1);(2)【分析】(1)利用提取公因式的方法因式分解,然后解一元二次方程即可;(2)利用平方差公式分解因式,然后解一元二次方程即可.【詳解】(1)原方程變形為,或,解得;(2)原方程變形為:,即,或,解得.【點睛】本題主

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論