




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題12勾股定理題型分析題型分析題型演練題型演練題型一用勾股定理解直角三角形題型一用勾股定理解直角三角形1.如圖,將SKIPIF1<0繞點(diǎn)SKIPIF1<0按順時(shí)針旋轉(zhuǎn)一定角度得到SKIPIF1<0,點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在SKIPIF1<0邊上.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由旋轉(zhuǎn)的性質(zhì)可知SKIPIF1<0,又因?yàn)镾KIPIF1<0,可得SKIPIF1<0為等邊三角形,又因?yàn)镾KIPIF1<0中有SKIPIF1<0,所以SKIPIF1<0,故由已知SKIPIF1<0,算出SKIPIF1<0,SKIPIF1<0相減即可.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0為等邊三角形,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0已知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選:B.2.如圖,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,分別以點(diǎn)B、C為圓心,大于SKIPIF1<0的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,作射線SKIPIF1<0,在射線SKIPIF1<0上任取一點(diǎn)D,連接SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為()A.10 B.11 C.12 D.6SKIPIF1<0【答案】A【分析】連接SKIPIF1<0、SKIPIF1<0(圖見詳解),由SKIPIF1<0可得SKIPIF1<0為線段SKIPIF1<0的垂直平分線,再利用勾股定理求出SKIPIF1<0、SKIPIF1<0,即可求得SKIPIF1<0的長(zhǎng).【詳解】如圖,連接SKIPIF1<0、SKIPIF1<0,設(shè)SKIPIF1<0交SKIPIF1<0于點(diǎn)O由作圖步驟可知:SKIPIF1<0SKIPIF1<0E點(diǎn)在線段SKIPIF1<0的垂直平分線上SKIPIF1<0SKIPIF1<0SKIPIF1<0A點(diǎn)在線段SKIPIF1<0的垂直平分線上SKIPIF1<0SKIPIF1<0垂直平分線段SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,由勾股定理得SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,由勾股定理,得SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:A3.小明釘了一個(gè)長(zhǎng)與寬分別為30厘米和20厘米的長(zhǎng)方形木框,為了增加其穩(wěn)定性,他準(zhǔn)備沿長(zhǎng)方形的對(duì)角線釘上一根木條,這根木條的長(zhǎng)應(yīng)為(
)厘米.(結(jié)果用最簡(jiǎn)二次根式表示)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由于長(zhǎng)方形木框的寬和高與所加固的木板正好構(gòu)成直角三角形,故可利用勾股定理解答.【詳解】解:設(shè)這條木板的長(zhǎng)度為SKIPIF1<0厘米,由勾股定理得:SKIPIF1<0,解得SKIPIF1<0.故選:C.4.如圖1是第七屆國(guó)際數(shù)學(xué)教育大會(huì)(SKIPIF1<0)的會(huì)徽,在其主體圖案中選擇兩個(gè)相鄰的直角三角形,恰好能夠組合得到如圖2所示的四邊形SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】A【分析】根據(jù)勾股定理和含30°角的直角三角形的性質(zhì)即可得到結(jié)論.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:A.5.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)D是邊SKIPIF1<0上一點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合),將SKIPIF1<0沿SKIPIF1<0翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,SKIPIF1<0交SKIPIF1<0于點(diǎn)F,若SKIPIF1<0,則點(diǎn)B到線段SKIPIF1<0的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】過A作SKIPIF1<0于G,過B作SKIPIF1<0于H,依據(jù)等腰三角形的性質(zhì),平行線的性質(zhì)以及折疊的性質(zhì),即可得到SKIPIF1<0的長(zhǎng),再根據(jù)勾股定理即可得到SKIPIF1<0的長(zhǎng),最后依據(jù)面積法即可得出SKIPIF1<0的長(zhǎng),進(jìn)而得到點(diǎn)B到線段SKIPIF1<0的距離.【詳解】解:如圖,過A作SKIPIF1<0于G,過B作SKIPIF1<0于H,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由折疊的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0故選:B.6.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0邊上一點(diǎn),過點(diǎn)SKIPIF1<0作射線SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)證明:SKIPIF1<0;(2)取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,猜想線段SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的數(shù)量關(guān)系,并證明.【答案】(1)見解析(2)SKIPIF1<0,理由見解析【分析】(1)證明SKIPIF1<0即可證得結(jié)論;(2)連接SKIPIF1<0,先根據(jù)等腰直角三角形的判定與性質(zhì)以及全等三角形的性質(zhì)得到SKIPIF1<0,進(jìn)而證明SKIPIF1<0求得SKIPIF1<0,SKIPIF1<0,利用勾股定理和線段和與差計(jì)算即可得出結(jié)論.【詳解】(1)證明:如圖,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)解:結(jié)論:SKIPIF1<0.證明:如圖,連接SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.7.如圖:已知在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(1)尺規(guī)作圖:①作SKIPIF1<0的高SKIPIF1<0;②作SKIPIF1<0的平分線SKIPIF1<0,交SKIPIF1<0于點(diǎn)E(保留作圖痕跡,不寫作法)(2)若SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【答案】(1)見解析(2)SKIPIF1<0【分析】(1)①先以A為圓心,大于A到SKIPIF1<0的距離為半徑畫弧,得與SKIPIF1<0的兩個(gè)交點(diǎn),再分別以這兩個(gè)交點(diǎn)為圓心,大于這兩個(gè)交點(diǎn)之間的距離的一半為半徑畫弧,得兩弧的交點(diǎn),過A與兩弧的交點(diǎn)畫線段,交SKIPIF1<0于D,則可得答案;②先以A為圓心,任意長(zhǎng)為半徑畫弧,得與SKIPIF1<0的兩邊相交的兩個(gè)交點(diǎn),再分別以這兩個(gè)交點(diǎn)為圓心,大于這兩個(gè)交點(diǎn)之間的距離的一半為半徑畫弧,得兩弧的交點(diǎn),過A與兩弧的交點(diǎn)畫線段SKIPIF1<0,交SKIPIF1<0于E,則可得答案;(2)利用含SKIPIF1<0的直角三角形的性質(zhì)求解SKIPIF1<0,再證明SKIPIF1<0,再利用勾股定理可得答案.【詳解】(1)解:①如圖,則SKIPIF1<0為所作;②如圖,則SKIPIF1<0為所作.(2)在SKIPIF1<0中,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為等腰直角三角形,∴SKIPIF1<0.8.在數(shù)學(xué)興趣小組活動(dòng)中,小亮進(jìn)行數(shù)學(xué)探究活動(dòng).(1)SKIPIF1<0是邊長(zhǎng)為3的等邊三角形,E是邊SKIPIF1<0上的一點(diǎn),且SKIPIF1<0,小亮以SKIPIF1<0為邊作等邊三角形SKIPIF1<0,如圖①,求SKIPIF1<0的長(zhǎng);(2)SKIPIF1<0是邊長(zhǎng)為3的等邊三角形,E是邊SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),小亮以SKIPIF1<0為邊作等邊三角形SKIPIF1<0,如圖②,在點(diǎn)E從點(diǎn)C到點(diǎn)A的運(yùn)動(dòng)過程中,求點(diǎn)F所經(jīng)過的路徑長(zhǎng);(3)SKIPIF1<0是邊長(zhǎng)為3的等邊三角形,M是高SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),小亮以SKIPIF1<0為邊作等邊三角形SKIPIF1<0,如圖③,在點(diǎn)M從點(diǎn)C到點(diǎn)D的運(yùn)動(dòng)過程中,求點(diǎn)N所經(jīng)過的路徑長(zhǎng).【答案】(1)SKIPIF1<0;(2)點(diǎn)F所經(jīng)過的路徑長(zhǎng)為3;(3)點(diǎn)SKIPIF1<0所經(jīng)過的路徑的長(zhǎng)為SKIPIF1<0.【分析】(1)根據(jù)等邊三角形的性質(zhì)可得SKIPIF1<0,根據(jù)全等三角形的性質(zhì)即可求出SKIPIF1<0的長(zhǎng);(2)連接SKIPIF1<0,易證SKIPIF1<0,根據(jù)全等三角形的性質(zhì)可得SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),點(diǎn)SKIPIF1<0與SKIPIF1<0重合,進(jìn)一步即可求出點(diǎn)SKIPIF1<0運(yùn)動(dòng)的路徑的長(zhǎng);(3)取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,易證SKIPIF1<0,根據(jù)全等三角形的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),點(diǎn)SKIPIF1<0與SKIPIF1<0重合,從而可求出點(diǎn)SKIPIF1<0所經(jīng)過的路徑長(zhǎng).【詳解】(1)解:∵SKIPIF1<0、SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)解:連接SKIPIF1<0,如圖所示:∵SKIPIF1<0、SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是邊長(zhǎng)為SKIPIF1<0的等邊三角形,∴SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),點(diǎn)SKIPIF1<0與SKIPIF1<0重合,∴點(diǎn)SKIPIF1<0運(yùn)動(dòng)的路徑的長(zhǎng)SKIPIF1<0;(3)解:取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,如圖所示:∴SKIPIF1<0,∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是邊長(zhǎng)為SKIPIF1<0的等邊三角形,∴SKIPIF1<0,SKIPIF1<0,根據(jù)勾股定理,得SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0處時(shí),點(diǎn)SKIPIF1<0與SKIPIF1<0重合,∴點(diǎn)SKIPIF1<0所經(jīng)過的路徑的長(zhǎng)SKIPIF1<0.9.如圖,SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0連接SKIPIF1<0并延長(zhǎng)與SKIPIF1<0交與點(diǎn)SKIPIF1<0,連接SKIPIF1<0.(1)如圖1,求證:SKIPIF1<0(2)如圖2,SKIPIF1<0繞著頂點(diǎn)SKIPIF1<0旋轉(zhuǎn),當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時(shí),取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,求證:SKIPIF1<0;(3)如圖3,若SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,當(dāng)SKIPIF1<0運(yùn)動(dòng)到使得SKIPIF1<0時(shí),求SKIPIF1<0的面積.【答案】(1)見解析(2)見解析(3)SKIPIF1<0【分析】(1)根據(jù)題意得出SKIPIF1<0,再由全等三角形的判定和性質(zhì)即可證明;(2)延長(zhǎng)SKIPIF1<0至點(diǎn)H使SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,根據(jù)全等三角形的性質(zhì)得出SKIPIF1<0,利用平行四邊形的判定和性質(zhì)得出SKIPIF1<0,SKIPIF1<0,最后利用全等三角形的判定和性質(zhì)及勾股定理即可證明;(3)作SKIPIF1<0平行于SKIPIF1<0交SKIPIF1<0于點(diǎn)J,連接SKIPIF1<0,根據(jù)平行線的性質(zhì)得出SKIPIF1<0,SKIPIF1<0,再由等腰三角形及等邊三角形的判定得出SKIPIF1<0是等腰三角形,即SKIPIF1<0,SKIPIF1<0是等邊三角形,過J作SKIPIF1<0的垂線交SKIPIF1<0于點(diǎn)K,再利用含30度角的三角形的性質(zhì)及勾股定理求解即可.【詳解】(1)證明:∵SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)由(1)得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,延長(zhǎng)SKIPIF1<0至點(diǎn)H使SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,即SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0;(3)作SKIPIF1<0平行于SKIPIF1<0交SKIPIF1<0于點(diǎn)J,連接SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等腰三角形,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,過J作SKIPIF1<0的垂線交SKIPIF1<0于點(diǎn)K,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.10.(1)問題發(fā)現(xiàn):如圖1,SKIPIF1<0和SKIPIF1<0均為等邊三角形,當(dāng)SKIPIF1<0旋轉(zhuǎn)至點(diǎn)SKIPIF1<0在同一直線上時(shí),連接SKIPIF1<0.①求SKIPIF1<0的大??;②求證:SKIPIF1<0.(2)拓展研究:如圖2,SKIPIF1<0和SKIPIF1<0均為等腰直角三角形,SKIPIF1<0,點(diǎn)SKIPIF1<0在同一直線上.若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng)度.【答案】(1)①SKIPIF1<0,②見解析;(2)SKIPIF1<0【分析】(1)由條件易證SKIPIF1<0,從而得到:SKIPIF1<0.由點(diǎn)SKIPIF1<0在同一直線上可求出SKIPIF1<0,從而可以求出SKIPIF1<0的度數(shù);(2)根據(jù)全等三角形的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論;(3)由“SKIPIF1<0”可證SKIPIF1<0,可得SKIPIF1<0,由勾股定理可求解.【詳解】(1)①解:∵SKIPIF1<0和SKIPIF1<0均為等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∵SKIPIF1<0為等邊三角形,∴SKIPIF1<0,∵點(diǎn)SKIPIF1<0在同一直線上,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;②證明:∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0;即SKIPIF1<0;(2)解:∵SKIPIF1<0為等腰直角三角形,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.題型二勾股定理與網(wǎng)格問題題型二勾股定理與網(wǎng)格問題11.如圖,在SKIPIF1<0的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0都在格點(diǎn)上,SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)面積相等的方法,即可求出答案.【詳解】解:由題意可得,SKIPIF1<0的面積是:SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的高,SKIPIF1<0,∴SKIPIF1<0,解得,SKIPIF1<0,故選:SKIPIF1<0.12.如圖,矩形ABCD由6個(gè)邊長(zhǎng)為1的小正方形組成,連接小正方形的頂點(diǎn)E、C及D、F交于點(diǎn)O,則SKIPIF1<0的值為(
).A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】以點(diǎn)F為原點(diǎn),以FC所在直線為x軸,建立如圖平面直角坐標(biāo)系F(0,0),E(﹣1,1),D(2,2),C(2,0),求出SKIPIF1<0,再根據(jù)0<∠DOC<SKIPIF1<0,求出SKIPIF1<0的值.【詳解】解:以點(diǎn)F為原點(diǎn),以FC所在直線為x軸,建立如圖平面直角坐標(biāo)系,則F(0,0),E(﹣1,1),D(2,2),C(2,0)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴cos∠DOC=SKIPIF1<0,∵0<∠DOC<SKIPIF1<0,∴sin∠DOC=SKIPIF1<0,∴tan∠DOC=SKIPIF1<0.故選:B.13.如圖,在下列網(wǎng)格中,小正方形的邊長(zhǎng)均為1,點(diǎn)A、B、O都在格點(diǎn)上,則∠AOB的正弦值是(
)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)勾股定理解得AB,AO,BO的長(zhǎng),再由SKIPIF1<0即可解答.【詳解】解:由圖可知,AB=2,AO=SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:A.14.如圖,在SKIPIF1<0的正方形網(wǎng)格中,若小正方形的邊長(zhǎng)是1,則任意兩個(gè)格點(diǎn)間的距離不可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用直角三角形的勾股定理即可求出答案.【詳解】解:SKIPIF1<0在SKIPIF1<0的正方形網(wǎng)格中,若小正方形的邊長(zhǎng)是1,SKIPIF1<0任意兩個(gè)格點(diǎn)間的距離為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,1,2,3,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0任意兩個(gè)格點(diǎn)間的距離不可能是SKIPIF1<0,故選:A.15.如圖所示的2×4的正方形網(wǎng)格中,△ABC的頂點(diǎn)都在小正方形的格點(diǎn)上,這樣的三角形稱為格點(diǎn)三角形,則點(diǎn)A到BC的距離等于()A.SKIPIF1<0 B.2SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】過點(diǎn)A作AD⊥BC于D,由網(wǎng)格特征和勾股定理可得,SKIPIF1<0的長(zhǎng),再利SKIPIF1<0即可求解.【詳解】解:如圖:過點(diǎn)A作AD⊥BC于D,由網(wǎng)格特征和勾股定理可得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0S△ABC=SKIPIF1<0BC?AD,SKIPIF1<0,∴AD=SKIPIF1<0,故選:C16.圖①、圖②分別是SKIPIF1<0的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1,SKIPIF1<0兩點(diǎn)在小正方形的格點(diǎn)上,請(qǐng)?jiān)趫D①、圖②中各取一點(diǎn)(點(diǎn)SKIPIF1<0必須在小正方形的格點(diǎn)上),使以SKIPIF1<0為頂點(diǎn)的三角形分別滿足下列要求.(1)在圖①中畫一個(gè)SKIPIF1<0,使SKIPIF1<0,面積為5;(2)在圖②中畫一個(gè)SKIPIF1<0,使SKIPIF1<0,SKIPIF1<0為鈍角,并求SKIPIF1<0的周長(zhǎng).【答案】(1)見解析(2)作圖見解析,SKIPIF1<0【分析】(1)根據(jù)題意可知SKIPIF1<0,要使SKIPIF1<0面積為5,則只需要過點(diǎn)SKIPIF1<0作垂直SKIPIF1<0的直線且長(zhǎng)度為2即可;(2)要使SKIPIF1<0為鈍角等腰三角形,則必須找到和SKIPIF1<0相等的邊SKIPIF1<0且SKIPIF1<0點(diǎn)必須在小正方形的頂點(diǎn)上.【詳解】(1)如圖①中,SKIPIF1<0即為所求;(2)如圖②中,SKIPIF1<0即為所求.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的周長(zhǎng)為SKIPIF1<0.17.如圖是由小正方形組成的SKIPIF1<0網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),僅用無刻度的直尺在給定的網(wǎng)格中完成畫圖,并保留必要的作圖痕跡.(1)在圖1中,在直線SKIPIF1<0的下方作格點(diǎn)D使SKIPIF1<0,連接SKIPIF1<0,垂足為H.(2)在圖2中找出所有可能的格點(diǎn)F,使SKIPIF1<0是以SKIPIF1<0為直角邊的等腰直角三角形,并畫出SKIPIF1<0.(3)在圖3中的線段SKIPIF1<0上畫出點(diǎn)G,使SKIPIF1<0.【答案】(1)見解析(2)見解析(3)見解析【分析】(1)利用數(shù)形結(jié)合的思想畫出圖形即可;(2)根據(jù)等腰直角三角形的定義畫出圖形即可;(3)構(gòu)造等腰直角SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0即為所求.【詳解】(1)解:如圖1中,線段SKIPIF1<0,點(diǎn)H即為所求;(2)解:如圖2中,點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0即為所求;(3)解:如圖3中,點(diǎn)SKIPIF1<0即為所求.18.如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),圖中已給出了兩個(gè)格點(diǎn)A,B,(1)在格點(diǎn)上取一點(diǎn)C,畫一個(gè)SKIPIF1<0,使∠BAC=45°,且SKIPIF1<0.(2)在格點(diǎn)上取一點(diǎn)D,畫一個(gè)SKIPIF1<0,且AD=5,SKIPIF1<0,并利用網(wǎng)格畫出∠DAB的平分線.【答案】(1)見解析(2)見解析【分析】(1)取格點(diǎn)SKIPIF1<0,使得∠BAC=45°,SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0的長(zhǎng)為4,則SKIPIF1<0;(2)根據(jù)網(wǎng)格的特點(diǎn),根據(jù)勾股定理求得SKIPIF1<0,確定點(diǎn)SKIPIF1<0的位置,然后根據(jù)網(wǎng)格的特點(diǎn)作出∠DAB的平分線即可求解.【詳解】(1)如圖所示;取格點(diǎn)SKIPIF1<0,使得∠BAC=45°,SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0的長(zhǎng)為4,則SKIPIF1<0理由:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)SKIPIF1<0即為所求;(2)如圖所示;根據(jù)勾股定理求得SKIPIF1<0,確定點(diǎn)SKIPIF1<0的位置,然后根據(jù)網(wǎng)格的特點(diǎn)作出∠DAB的平分線理由:取格點(diǎn)SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的角平分線.19.圖①、圖②、圖③均是6×6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),只用無刻度的直尺,在圖①、圖②、圖③中各畫一個(gè)三角形,要求同時(shí)滿足以下三個(gè)條件:(1)三角形的頂點(diǎn)在格點(diǎn)上;(2)三角形是腰長(zhǎng)為無理數(shù)的等腰三角形;(3)三角形的面積為6.【答案】見解析【分析】結(jié)合網(wǎng)格特點(diǎn)利用勾股定理構(gòu)造腰為無理數(shù)的等腰三角形,畫圖即可.【詳解】如圖所示:由圖可知三角形的三個(gè)頂點(diǎn)均在格點(diǎn)上,根據(jù)勾股定理有:圖①三角形的兩條腰長(zhǎng)為:SKIPIF1<0,圖②三角形的兩條腰長(zhǎng)為:SKIPIF1<0,圖③三角形的兩條腰長(zhǎng)為:SKIPIF1<0,根據(jù)網(wǎng)格圖形可知圖①三角形的底為4,高為3,故面積為4×3×SKIPIF1<0=6,圖②三角形的底為6,高為2,故面積為6×2×SKIPIF1<0=6,圖③三角形的底為2,高為6,故面積為2×6×SKIPIF1<0=6,故所畫三角形即為所求;題型三勾股定理與折疊問題題型三勾股定理與折疊問題20.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,將矩形沿SKIPIF1<0折疊,點(diǎn)SKIPIF1<0落在點(diǎn)SKIPIF1<0處,則重疊部分SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】已知SKIPIF1<0為SKIPIF1<0邊上的高,要求SKIPIF1<0的面積,求得SKIPIF1<0即可,求證SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則在SKIPIF1<0中,根據(jù)勾股定理求SKIPIF1<0,于是得到SKIPIF1<0,即可得到答案.【詳解】解:由翻折變換的性質(zhì)可知:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵四邊形SKIPIF1<0為矩形,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:B.21.如圖,長(zhǎng)方形ABCD中,AB=3cm,AD=9cm,將此長(zhǎng)方形折疊,使點(diǎn)B與點(diǎn)D重合折痕為EF,則△ABE的面積為()A.3cmSKIPIF1<0 B.4cmSKIPIF1<0 C.6cmSKIPIF1<0 D.12cmSKIPIF1<0【答案】C【分析】根據(jù)折疊的條件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【詳解】解:將此長(zhǎng)方形折疊,使點(diǎn)B與點(diǎn)D重合,∴BE=ED.∵AD=AE+DE=AE+BE=9cm,∴BE=9-AE,根據(jù)勾股定理可知:SKIPIF1<0.即SKIPIF1<0解得:AE=4,∴△ABE的面積為SKIPIF1<0.故選C.22.如圖,有一張直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上且與AE重合,則BD的長(zhǎng)為(
)A.5cm B.4cm C.3cm D.2cm【答案】A【分析】根據(jù)折疊的性質(zhì)可得AC=AE=6cm,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,從而求出BE,設(shè)CD=DE=xcm,表示出BD,然后在Rt△DEB中,利用勾股定理列式計(jì)算即可得解.【詳解】解:∵△ACD與△AED關(guān)于AD成軸對(duì)稱,∴AC=AE=6cm,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10cm,∴BE=AB-AE=10-6=4(cm),設(shè)CD=DE=xcm,則DB=BC-CD=(8-x)cm,在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,解得x=3,∴CD=3cm.∴BD=8-x=8-3=5(cm),故選:A.23.如圖,三角形紙片ABC中,∠BAC=90°,AB=2,AC=3.沿過點(diǎn)A的直線將紙片折疊,使點(diǎn)B落在邊BC上的點(diǎn)D處;再折疊紙片,使點(diǎn)C與點(diǎn)D重合,若折痕與AC的交點(diǎn)為E,則AE的長(zhǎng)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,繼而設(shè)AE=x,則CE=DE=3-x,根據(jù)勾股定理即可求解.【詳解】解:∵沿過點(diǎn)A的直線將紙片折疊,使點(diǎn)B落在邊BC上的點(diǎn)D處,∴AD=AB=2,∠B=∠ADB,∵折疊紙片,使點(diǎn)C與點(diǎn)D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴∠ADE=90°,∴AD2+DE2=AE2,設(shè)AE=x,則CE=DE=3-x,∴22+(3-x)2=x2,解得SKIPIF1<0即AE=SKIPIF1<0故選A24.如圖,三角形紙片ABC,點(diǎn)D是BC邊上一點(diǎn),連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點(diǎn)G,連接BE交AD于點(diǎn)F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點(diǎn)F到BC的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點(diǎn)F到BD的距離為h,根據(jù)SKIPIF1<0?BD?h=SKIPIF1<0?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴SKIPIF1<0?(AF+DF)?BF=16,∴SKIPIF1<0?(6+DF)×4=16,∴DF=2,∴DB=SKIPIF1<0,設(shè)點(diǎn)F到BD的距離為h,則有SKIPIF1<0?BD?h=SKIPIF1<0?BF?DF,∴SKIPIF1<0h=4×2,∴h=SKIPIF1<0,∴點(diǎn)F到BC的距離為SKIPIF1<0.故選:C題型四勾股定理的證明方法題型四勾股定理的證明方法25.根據(jù)圖形(圖1,圖2)的面積關(guān)系,下列說法正確的是(
)A.圖1能說明勾股定理,圖2能說明完全平方公式B.圖1能說明平方差公式,圖2能說明勾股定理C.圖1能說明完全平方公式,圖2能說明平方差公式D.圖1能說明完全平方公式,圖2能說明勾股定理【答案】B【分析】結(jié)合圖形分別表示出圖1與圖2的面積等式,即可得出結(jié)果.【詳解】解:圖1的面積關(guān)系表示為:SKIPIF1<0,為平方差公式;圖2的面積表示為:SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,為勾股定理;故選:B.26.如圖,將正方形ABCD剪去4個(gè)全等的直角三角形(圖中陰影部分),得到邊長(zhǎng)為c的四邊形EFGH.下列等式成立的是(
)A.a(chǎn)bc B.c2ab24ab C.c2abab D.a(chǎn)2b2c2【答案】D【分析】用兩種方法表示剩下正方形的面積,列出等式,化簡(jiǎn)即可得到答案.【詳解】解:由圖可得剩下的正方形的面積為:SKIPIF1<0,根據(jù)正方形面積公式,剩下的正方形面積也可以表示為:SKIPIF1<0,∴SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,故選:D.27.勾股定理是歷史上第一個(gè)把數(shù)與形聯(lián)系起來的定理,其證明是論證幾何的發(fā)端.下面四幅圖中不能證明勾股定理的是(
)A.B.C. D.【答案】D【分析】利用兩個(gè)以a和b為直角邊三角形面積與一個(gè)直角邊為c的等腰直角三角形面積和等于上底為a,下第為b,高為(a+b)的梯形面積推導(dǎo)勾股定理可判斷A,利用以a與b為兩直角邊四個(gè)全等三角形面積與邊長(zhǎng)為c的小正方形面積和等于以a+b的和為邊正方形面積推導(dǎo)勾股定理可判斷B,利用以a與(a+b)為兩直角邊四個(gè)全等三角形面積與邊長(zhǎng)為b的小正方形面積和等于以c為邊正方形面積推導(dǎo)勾股定理可判斷C,利用四個(gè)小圖形面積和等于大正方形面積推導(dǎo)完全平方公式可判斷D.【詳解】解:A、兩個(gè)以a和b為直角邊三角形面積與一個(gè)直角邊為c的等腰直角三角形面積和等于上底為a,下第為b,高為(a+b)的梯形面積,故SKIPIF1<0,整理得:SKIPIF1<0,即能證明勾股定理,故本選項(xiàng)不符合題意;B、以a與b為兩直角邊四個(gè)全等三角形面積與邊長(zhǎng)為c的小正方形面積和等于以a+b的和為邊正方形面積,故SKIPIF1<0,整理得:SKIPIF1<0,即能證明勾股定理,故本選項(xiàng)不符合題意;C、以a與(a+b)為兩直角邊四個(gè)全等三角形面積與邊長(zhǎng)為b的小正方形面積和等于以c為邊正方形面積,SKIPIF1<0,整理得:SKIPIF1<0,即能證明勾股定理,故本選項(xiàng)不符合題意;D、四個(gè)小圖形面積和等于大正方形面積,SKIPIF1<0,根據(jù)圖形證明完全平方公式,不能證明勾股定理,故本選項(xiàng)符合題意;故選:D.28.在勾股定理的學(xué)習(xí)過程中,我們已經(jīng)學(xué)會(huì)了運(yùn)用以下圖形,驗(yàn)證著名的勾股定理:這種根據(jù)圖形直觀推論或驗(yàn)證數(shù)學(xué)規(guī)律和公式的方法,簡(jiǎn)稱為“無字證明”.實(shí)際上它也可用于驗(yàn)證數(shù)與代數(shù),圖形與幾何等領(lǐng)域中的許多數(shù)學(xué)公式和規(guī)律,它體現(xiàn)的數(shù)學(xué)思想是(
)A.統(tǒng)計(jì)思想 B.分類思想 C.?dāng)?shù)形結(jié)合思想 D.函數(shù)思想【答案】C【分析】根據(jù)圖形直觀推論或驗(yàn)證數(shù)學(xué)規(guī)律和公式的方法,據(jù)此回答即可.【詳解】解:根據(jù)圖形直觀推論或驗(yàn)證數(shù)學(xué)規(guī)律和公式的方法,如勾股定理的推導(dǎo)是根據(jù)圖形面積轉(zhuǎn)換得以證明的,由圖形到數(shù)學(xué)規(guī)律的轉(zhuǎn)化體現(xiàn)的數(shù)學(xué)的思想為:數(shù)形結(jié)合思想,故選:C.29.觀察“趙爽弦圖”(如圖),若圖中四個(gè)全等的直角三角形的兩直角邊分別為a,b,SKIPIF1<0,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個(gè)直角三角形的面積可得問題的答案.【詳解】標(biāo)記如下:∵SKIPIF1<0,∴(a﹣b)2=a2+b2﹣4SKIPIF1<0=a2﹣2ab+b2.故選:C.題型五勾股定理的實(shí)際應(yīng)用題型五勾股定理的實(shí)際應(yīng)用30.一架長(zhǎng)為10米的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為6米,如果梯子的頂端沿墻壁下滑1米,那么梯子的底端向后滑動(dòng)的距離()A.等于1米 B.大于1米 C.小于1米 D.不能確定【答案】C【詳解】如圖,在△ABC中,∠ACB=90°,AB=10米,AC=6米,由勾股定理得BC=8米,△A1BC1中,∠C=90°,A1B1=10米,A1C=5米,由勾股定理得B1C=5SKIPIF1<0米,∴BB1=B1C-BC=5SKIPIF1<0-8≈0.66(米),故選C.31.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載這樣一個(gè)問題,原文是:“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長(zhǎng)幾何?”譯文為;“現(xiàn)在有一根直立的木柱,用一根繩索綁住木柱的頂端,另一端自由下垂,則繩索比木柱多三尺;將繩索的另一端靠地拉直,此時(shí)距離木柱的底端八尺,問這條繩索的長(zhǎng)度是多少?”根據(jù)題意,求得繩索的長(zhǎng)度是(
)A.9SKIPIF1<0尺 B.9尺 C.12尺 D.12SKIPIF1<0尺【答案】D【分析】設(shè)木柱長(zhǎng)度為x尺,則繩索長(zhǎng)度為(x+3)尺,根據(jù)題意利用勾股列方程即可求解.【詳解】解:設(shè)木柱長(zhǎng)度為x尺,則繩索長(zhǎng)度為(x+3)尺,根據(jù)題意可得:x2+82=(x+3)2,解得:x=SKIPIF1<0.∴x+3=12SKIPIF1<0,故繩索長(zhǎng)度為12SKIPIF1<0尺.故選:D.32.如圖,《九章算術(shù)》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺,問折高者幾何?意思是:一根竹子,原高一丈(一丈=十尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),求折斷處離地面的高度.設(shè)竹子折斷處離地面x尺,根據(jù)題意,可列方程為(
)A.x2+62=102 B.(10-x)2+62=x2C.x2+(10-x)2=62 D.x2+62=(10-x)2【答案】D【分析】竹子折斷后剛好構(gòu)成一直角三角形,設(shè)竹子折斷處離地面x尺,則斜邊為(10-x)尺,利用勾股定理解題即可.【詳解】解:設(shè)竹子折斷處離地面x尺,則斜邊為(10-x)尺,根據(jù)勾股定理得:x2+62=(10-x)2.故選D33.小穎的媽媽用如圖的口杯喝花茶,由于吸管有點(diǎn)短,不小心斜滑到杯里,已知口杯的內(nèi)徑6cm,口杯內(nèi)部高度9cm,要使吸管不斜滑到杯里,吸管最短需要(
)cm.A.9 B.10 C.11 D.12【答案】C【分析】根據(jù)勾股定理即可求得.【詳解】解:如圖:連接AC故要使吸管不斜滑到杯里,吸管最短需要的長(zhǎng)度是線段AC的長(zhǎng)度由題意可知:BC=6cm,AB=9cm在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0要使吸管不斜滑到杯里,吸管最短需要11cm故選:C34.如圖,一艘海輪位于燈塔P的北偏東30°方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,這時(shí),海輪所在的B處與燈塔P的距離為()A.40海里 B.40SKIPIF1<0海里 C.80海里 D.40SKIPIF1<0海
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鑿井勘查合同范例
- 勞務(wù)損傷賠償合同范本
- 化工生產(chǎn)合同范本
- 2024年中國(guó)動(dòng)漫博物館(杭州)招聘考試真題
- 2024年重慶永川區(qū)五間鎮(zhèn)招聘公益性崗位人員筆試真題
- 鄉(xiāng)下房屋轉(zhuǎn)賣合同范本
- gf分包合同范本
- 修路合同范本簡(jiǎn)版
- 出售小區(qū)公共用地合同范本
- 北京三室一廳租房合同范本
- 安全管理工作中形式主義及防止對(duì)策
- 2024年鄭州信息科技職業(yè)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 2023-2024學(xué)年西安市高二數(shù)學(xué)第一學(xué)期期末考試卷附答案解析
- 學(xué)校保密教育培訓(xùn)課件
- 班組文化是企業(yè)文化建設(shè)的核心
- Project-培訓(xùn)教學(xué)課件
- 福建省服務(wù)區(qū)標(biāo)準(zhǔn)化設(shè)計(jì)指南
- 秋風(fēng)詞賞析課件古詩(shī)詞賞析
- 銷售人員薪酬設(shè)計(jì)實(shí)例 薪酬制度設(shè)計(jì) 薪酬設(shè)計(jì)方案 設(shè)計(jì)案例全套
- 福特F-150猛禽說明書
- 征地搬遷基本要求及工作技巧課件
評(píng)論
0/150
提交評(píng)論