2023-2024學年湖北利川文斗重點中學中考數學押題卷含解析_第1頁
2023-2024學年湖北利川文斗重點中學中考數學押題卷含解析_第2頁
2023-2024學年湖北利川文斗重點中學中考數學押題卷含解析_第3頁
2023-2024學年湖北利川文斗重點中學中考數學押題卷含解析_第4頁
2023-2024學年湖北利川文斗重點中學中考數學押題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北利川文斗重點中學中考數學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,一次函數y1=x與二次函數y2=ax2+bx+c圖象相交于P、Q兩點,則函數y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.2.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.43.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.164.下列運算正確的是()A.x2?x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b25.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數為()A.50° B.110° C.130° D.150°6.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數據35578用科學記數法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1057.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣58.某校數學興趣小組在一次數學課外活動中,隨機抽查該校10名同學參加今年初中學業(yè)水平考試的體育成績,得到結果如下表所示:下列說法正確的是()A.這10名同學體育成績的中位數為38分B.這10名同學體育成績的平均數為38分C.這10名同學體育成績的眾數為39分D.這10名同學體育成績的方差為29.如圖,∠ACB=90°,D為AB的中點,連接DC并延長到E,使CE=CD,過點B作BF∥DE,與AE的延長線交于點F,若AB=6,則BF的長為()A.6 B.7 C.8 D.1010.圖1和圖2中所有的正方形都全等,將圖1的正方形放在圖2中的①②③④某一位置,所組成的圖形不能圍成正方體的位置是()A.① B.② C.③ D.④二、填空題(共7小題,每小題3分,滿分21分)11.計算:﹣1﹣2=_____.12.有一組數據:2,3,5,5,x,它們的平均數是10,則這組數據的眾數是.13.若|a|=2016,則a=___________.14.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側面積等于.15.分解因式:8a3﹣8a2+2a=_____.16.一元二次方程x2﹣4=0的解是._________17.菱形的兩條對角線長分別是方程的兩實根,則菱形的面積為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系xOy中,函數()的圖象經過點,AB⊥x軸于點B,點C與點A關于原點O對稱,CD⊥x軸于點D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經過點C,且與x軸,y軸的交點分別為點E,F,當時,求點F的坐標.19.(5分)計算:2cos30°+--()-220.(8分)在平面直角坐標系xOy中,拋物線,與x軸交于點C,點C在點D的左側,與y軸交于點A.求拋物線頂點M的坐標;若點A的坐標為,軸,交拋物線于點B,求點B的坐標;在的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結合函數的圖象,求m的取值范圍.21.(10分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.22.(10分)如圖,在中,,平分,交于點,點在上,經過兩點,交于點,交于點.求證:是的切線;若的半徑是,是弧的中點,求陰影部分的面積(結果保留和根號).23.(12分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調查,并將調查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據調查結果發(fā)現該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據調查情況把學生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數為_______人,扇形統(tǒng)計圖中D類所對應扇形的圓心角為_____度,請補全條形統(tǒng)計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.24.(14分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數;(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

由一次函數y1=x與二次函數y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數y=ax2+(b-1)x+c與x軸有兩個交點,根據方程根與系數的關系得出函數y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數y=x與二次函數y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數根.∴函數y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.2、D【解析】

先由兩組對邊分別平行的四邊形為平行四邊形,根據DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據兩直線平行內錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數.【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數有4個.故選D.【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質,角平分線的定義,以及等腰三角形的判定與性質,熟練掌握平行四邊形、矩形及菱形的判定與性質是解本題的關鍵.3、D【解析】試題分析:設AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應用;2.切線的性質.4、C【解析】

根據同底數冪的法則、合并同類項的法則、積的乘方法則、完全平方公式逐一進行計算即可.【詳解】A、x2?x3=x5,故A選項錯誤;B、x2+x2=2x2,故B選項錯誤;C、(﹣2x)2=4x2,故C選項正確;D、(a+b)2=a2+2ab+b2,故D選項錯誤,故選C.【點睛】本題考查了同底數冪的乘法、合并同類項、積的乘方以及完全平方公式,熟練掌握各運算的運算法則是解題的關鍵5、C【解析】

如圖,根據長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.6、B【解析】

科學計數法是a×,且,n為原數的整數位數減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學計數法表示較大的數,屬于基礎題型.理解科學計數法的表示方法是解題的關鍵.7、B【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.8、C【解析】試題分析:10名學生的體育成績中39分出現的次數最多,眾數為39;第5和第6名同學的成績的平均值為中位數,中位數為:=39;平均數==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權平均數;中位數;眾數.9、C【解析】∵∠ACB=90°,D為AB的中點,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,點D是AB的中點,∴ED是△AFB的中位線,∴BF=2ED=3.故選C.10、A【解析】

由平面圖形的折疊及正方體的表面展開圖的特點解題.【詳解】將圖1的正方形放在圖2中的①的位置出現重疊的面,所以不能圍成正方體,故選A.【點睛】本題考查了展開圖折疊成幾何體,解題時勿忘記四棱柱的特征及正方體展開圖的各種情形.注意:只要有“田”字格的展開圖都不是正方體的表面展開圖.二、填空題(共7小題,每小題3分,滿分21分)11、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案為-3.12、1【解析】根據平均數為10求出x的值,再由眾數的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數據中1出現的次數最多,則這組數據的眾數為1.故答案為1.13、±1【解析】試題分析:根據零指數冪的性質(),可知|a|=1,座椅可知a=±1.14、8π【解析】

圓錐的側面積就等于母線長乘底面周長的一半.依此公式計算即可.【詳解】側面積=4×4π÷2=8π.故答案為8π.【點睛】本題主要考查了圓錐的計算,正確理解圓錐的側面積的計算可以轉化為扇形的面積的計算,理解圓錐與展開圖之間的關系.15、2a(2a﹣1)2【解析】

提取2a,再將剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【詳解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【點睛】本題考查了因式分解,仔細觀察題目并提取公因式是解決本題的關鍵.16、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.17、2【解析】

解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點睛:本題考查菱形的性質.菱形的對角線互相垂直,以及對角線互相垂直的四邊形的面積的特點和根與系數的關系.三、解答題(共7小題,滿分69分)18、(1)m=8,n=-2;(2)點F的坐標為,【解析】分析:(1)利用三角形的面積公式構建方程求出n,再利用待定系數法求出m的的值即可;(2)分兩種情形分別求解如①圖,當k<0時,設直線y=kx+b與x軸,y軸的交點分別為,.②圖中,當k>0時,設直線y=kx+b與x軸,y軸的交點分別為點,.詳解:(1)如圖②∵點A的坐標為,點C與點A關于原點O對稱,∴點C的坐標為.∵AB⊥x軸于點B,CD⊥x軸于點D,∴B,D兩點的坐標分別為,.∵△ABD的面積為8,,∴.解得.∵函數()的圖象經過點,∴.(2)由(1)得點C的坐標為.①如圖,當時,設直線與x軸,y軸的交點分別為點,.由CD⊥x軸于點D可得CD∥.∴△CD∽△O.∴.∵,∴.∴.∴點的坐標為.②如圖,當時,設直線與x軸,y軸的交點分別為點,.同理可得CD∥,.∵,∴為線段的中點,.∴.∴點的坐標為.綜上所述,點F的坐標為,.點睛:本題考查了反比例函數綜合題、一次函數的應用、三角形的面積公式等知識,解題的關鍵是會用方程的思想思考問題,會用分類討論的思想思考問題,屬于中考壓軸題.19、5【解析】

根據實數的計算,先把各數化簡,再進行合并即可.【詳解】原式==5【點睛】此題主要考查實數的計算,解題的關鍵是熟知特殊三角函數的化簡與二次根式的運算.20、(1)M的坐標為;(2)B(4,3);(3)或.【解析】

利用配方法將已知函數解析式轉化為頂點式方程,可以直接得到答案根據拋物線的對稱性質解答;利用待定系數法求得拋物線的表達式為根據題意作出圖象G,結合圖象求得m的取值范圍.【詳解】解:(1),該拋物線的頂點M的坐標為;由知,該拋物線的頂點M的坐標為;該拋物線的對稱軸直線是,點A的坐標為,軸,交拋物線于點B,點A與點B關于直線對稱,;拋物線與y軸交于點,..拋物線的表達式為.拋物線G的解析式為:由.由,得:拋物線與x軸的交點C的坐標為,點C關于y軸的對稱點的坐標為.把代入,得:.把代入,得:.所求m的取值范圍是或.故答案為(1)M的坐標為;(2)B(4,3);(3)或.【點睛】本題考查了二次函數圖象與幾何變換,待定系數法求二次函數的解析式、二次函數的圖象和性質,畫出函數G的圖象是解題的關鍵.21、38+12【解析】

根據∠ABC=90°,AE=CE,EB=12,求出AC,根據Rt△ABC中,∠CAB=30°,BC=12,求出根據DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出AD,從而得出DC的長,最后根據四邊形ABCD的周長=AB+BC+CD+DA即可得出答案.【詳解】∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12,∴AC=AE+CE=24,∵在Rt△ABC中,∠CAB=30°,∴BC=12,∵DE⊥AC,AE=CE,∴AD=DC,在Rt△ADE中,由勾股定理得∴DC=13,∴四邊形ABCD的周長=AB+BC+CD+DA=【點睛】此題考查了解直角三角形,用到的知識點是解直角三角形、直角三角形斜邊上的中線、勾股定理等,關鍵是根據有關定理和解直角三角形求出四邊形每條邊的長.22、(1)證明見解析;(2)【解析】

(1)連接OD,根據角平分線的定義和等腰三角形的性質可得∠ADO=∠CAD,即可證明OD//AC,進而可得∠ODB=90°,即可得答案;(2)根據圓周角定理可得弧弧弧,即可證明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的長,利用S陰影=S△BOD-S扇形DOE即可得答案.【詳解】(1)連接∵平分,∴,∵,∴,∴,∴OD//AC,∴,∴又是的半徑,∴是的切線(2)由題意得∵是弧的中點∴弧弧∵∴弧弧∴弧弧弧∴在中∵∴.【點睛】本題考查的是切線的判定、圓周角定理及扇形面積,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可;在同圓或等圓中,同弧或等弧所對的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論