江蘇省張家港市梁豐中學2025屆九上數(shù)學期末達標檢測模擬試題含解析_第1頁
江蘇省張家港市梁豐中學2025屆九上數(shù)學期末達標檢測模擬試題含解析_第2頁
江蘇省張家港市梁豐中學2025屆九上數(shù)學期末達標檢測模擬試題含解析_第3頁
江蘇省張家港市梁豐中學2025屆九上數(shù)學期末達標檢測模擬試題含解析_第4頁
江蘇省張家港市梁豐中學2025屆九上數(shù)學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省張家港市梁豐中學2025屆九上數(shù)學期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在△ABC與△DEF中,,,如果∠B=50°,那么∠E的度數(shù)是().A.50°; B.60°;C.70°; D.80°.2.如圖,線段AB是⊙O的直徑,弦,,則等于().A. B. C. D.3.如圖所示,在⊙O中,=,∠A=30°,則∠B=()A.150° B.75° C.60° D.15°4.從1、2、3、4四個數(shù)中隨機選取兩個不同的數(shù),分別記為,,則滿足的概率為()A. B. C. D.5.如圖,在正方形網(wǎng)格上,與△ABC相似的三角形是()A.△AFD B.△FED C.△AED D.不能確定6.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結(jié)論錯誤的是()A.AEEC=BEED B.AE7.有一等腰三角形紙片ABC,AB=AC,裁剪方式及相關(guān)數(shù)據(jù)如圖所示,則得到的甲、乙、丙、丁四張紙片中,面積最大的是()A.甲 B.乙 C.丙 D.丁8.在半徑為的圓中,挖出一個半徑為的圓面,剩下的圓環(huán)的面積為,則與的函數(shù)關(guān)系式為()A. B. C. D.9.一條排水管的截面如圖所示,已知排水管的半徑OB=10,水面寬AB=16,則截面圓心O到水面的距離OC是()A.4 B.5 C.6 D.810.某射擊運動員在訓練中射擊了10次,成績?nèi)鐖D所示:下列結(jié)論不正確的是()A.眾數(shù)是8 B.中位數(shù)是8 C.平均數(shù)是8.2 D.方差是1.211.已知關(guān)于x的方程x2+3x+a=0有一個根為﹣2,則另一個根為()A.5 B.﹣1 C.2 D.﹣512.如圖,在Rt△ABC中,∠BAC=90o,AH是高,AM是中線,那么在結(jié)論①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中錯誤的個數(shù)有()A.0個 B.1個 C.2個 D.3個二、填空題(每題4分,共24分)13.已知實數(shù)x,y滿足,則x+y的最大值為_______.14.分解因式:x3﹣16x=______.15.函數(shù)y=(m為常數(shù))的圖象上有三點(﹣1,y1)、、,則函數(shù)值y1、y2、y3的大小關(guān)系是_____.(用“<”符號連接)16.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.17.計算:=______.18.將一枚標有數(shù)字1、2、3、4、5、6的均勻正方體骰子拋擲一次,則向上一面數(shù)字為奇數(shù)的概率等于_____.三、解答題(共78分)19.(8分)如圖,已知在平面直角坐標系xOy中,直線y=x+與x軸交于點A,與y軸交于點B,點F是點B關(guān)于x軸的對稱點,拋物線y=x2+bx+c經(jīng)過點A和點F,與直線AB交于點C.(1)求b和c的值;(2)點P是直線AC下方的拋物線上的一動點,連結(jié)PA,PB.求△PAB的最大面積及點P到直線AC的最大距離;(3)點Q是拋物線上一點,點D在坐標軸上,在(2)的條件下,是否存在以A,P,D,Q為頂點且AP為邊的平行四邊形,若存在,直接寫出點Q的坐標;若不存在,說明理由.20.(8分)如圖,已知AB是⊙O的直徑,點C在⊙O上,點P是AB延長線上一點,∠BCP=∠A.(1)求證:直線PC是⊙O的切線;(2)若CA=CP,⊙O的半徑為2,求CP的長.21.(8分)在初中階段的函數(shù)學習中,我們經(jīng)歷了“確定函數(shù)的表達式一一利用函數(shù)圖象研究其性質(zhì)一一運用函數(shù)解決問題”的學習過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學的函數(shù)圖象.同時,我們也學習了絕對值的意義結(jié)合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題:在函數(shù)中,當時,.(1)求這個函數(shù)的表達式;(2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數(shù)的圖象并寫出這個函數(shù)的一條性質(zhì);(3)已如函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式的解集.22.(10分)如圖,在平面直角坐標系中,二次函數(shù)交軸于點、,交軸于點,在軸上有一點,連接.(1)求二次函數(shù)的表達式;(2)若點為拋物線在軸負半軸上方的一個動點,求面積的最大值;(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標,若不存在請說明理由.23.(10分)已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根,.(1)求的最小整數(shù)值;(2)當時,求的值.24.(10分)解方程:(1)x2﹣4x+2=0;(2)25.(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.(1)如圖(1),連接AF、CE.①四邊形AFCE是什么特殊四邊形?說明理由;②求AF的長;(2)如圖(2),動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.26.如圖,在下列(邊長為1)的網(wǎng)格中,已知的三個頂點,,在格點上,請分別按不同要求在網(wǎng)格中描出一個點,并寫出點的坐標.(1)經(jīng)過,,三點有一條拋物線,請在圖1中描出點,使點落在格點上,同時也落在這條拋物線上;則點的坐標為______;(2)經(jīng)過,,三點有一個圓,請用無刻度的直尺在圖2中畫出圓心;則點的坐標為______.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)已知可以確定;根據(jù)對應角相等的性質(zhì)即可求得的大小,即可解題.【詳解】解:∵,,∴與是對應角,與是對應角,故.故選:C.【點睛】本題考查了相似三角形的判定及性質(zhì),本題中得出和是對應角是解題的關(guān)鍵.2、C【分析】先根據(jù)垂徑定理得到,再根據(jù)圓周角定理得∠BOD=2∠CAB=40°,然后利用鄰補角的定義計算∠AOD的度數(shù).【詳解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案為C.【點睛】本題考查圓中的角度計算,熟練掌握垂徑定理和圓周角定理是關(guān)鍵.3、B【詳解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形內(nèi)角和定理).故選B.考點:圓心角、弧、弦的關(guān)系.4、C【分析】根據(jù)題意列出樹狀圖,得到所有a、c的組合再找到滿足的數(shù)對即可.【詳解】如圖:符合的共有6種情況,而a、c的組合共有12種,故這兩人有“心靈感應”的概率為.故選:C.【點睛】此題考查了利用樹狀圖法求概率,要做到勿漏、勿多,同時要適時利用概率公式解答.5、A【分析】根據(jù)題意直接利用三角形三邊長度,得出其比值,進而分析即可求出相似三角形.【詳解】解:∵AF=4,DF=4,AD=4,AB=2,BC=2,AC=2,∴,∴△AFD∽△ABC.故選:A.【點睛】本題主要考查相似三角形的判定以及勾股定理,由勾股定理得出三角形各邊長是解題的關(guān)鍵.6、A【解析】利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.7、D【分析】根據(jù)相似三角形的性質(zhì)求得甲的面積和丙的面積,進一步求得乙和丁的面積,比較即可求得.【詳解】解:如圖:∵AD⊥BC,AB=AC,∴BD=CD=5+2=7,∵AD=2+1=3,∴S△ABD=S△ACD==∵EF∥AD,∴△EBF∽△ABD,∴=()2=,∴S甲=,∴S乙=,同理=()2=,∴S丙=,∴S丁=﹣=,∵,∴面積最大的是丁,故選:D.【點睛】本題考查了三角形相似的判定和性質(zhì),相似三角形面積的比等于相似比的平方.解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題.8、D【分析】根據(jù)圓環(huán)的面積=大圓的面積-小圓的面積,即可得出結(jié)論.【詳解】解:根據(jù)題意:y=故選D.【點睛】此題考查的是圓環(huán)的面積公式,掌握圓環(huán)的面積=大圓的面積-小圓的面積是解決此題的關(guān)鍵.9、C【分析】根據(jù)垂徑定理得出BC=AB,再根據(jù)勾股定理求出OC的長:【詳解】∵OC⊥AB,AB=16,∴BC=AB=1.在Rt△BOC中,OB=10,BC=1,∴.故選C.10、D【分析】首先根據(jù)圖形數(shù)出各環(huán)數(shù)出現(xiàn)的次數(shù),在進行計算眾數(shù)、中位數(shù)、平均數(shù)、方差.【詳解】根據(jù)圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數(shù)是8,中位數(shù)是8,平均數(shù)是方差是故選D【點睛】本題主要考查統(tǒng)計的基本知識,關(guān)鍵在于眾數(shù)、中位數(shù)、平均數(shù)和方差的概念.特別是方差的公式.11、B【分析】根據(jù)關(guān)于x的方程x2+3x+a=0有一個根為-2,可以設(shè)出另一個根,然后根據(jù)根與系數(shù)的關(guān)系可以求得另一個根的值,本題得以解決.【詳解】∵關(guān)于x的方程x2+3x+a=0有一個根為-2,設(shè)另一個根為m,

∴-2+m=?,

解得,m=-1,

故選B.12、B【分析】根據(jù)直角三角形斜邊上的中線性質(zhì)和等腰三角形的性質(zhì)得出∠B=∠BAM,根據(jù)已知條件判斷∠B=∠MAH不一定成立;根據(jù)三角形的內(nèi)角和定理及余角的性質(zhì)得出∠B=∠CAH.【詳解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中線,∴AM=BM,∴∠B=∠BAM,①正確;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②錯誤;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正確.故選:B.【點睛】本題主要考查對直角三角形斜邊上的中線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)這些性質(zhì)進行推理是解此題的關(guān)鍵.二、填空題(每題4分,共24分)13、4【解析】用含x的代數(shù)式表示y,計算x+y并進行配方即可.【詳解】∵∴∴∴當x=-1時,x+y有最大值為4故答案為4【點睛】本題考查的是求代數(shù)式的最大值,解題的關(guān)鍵是配方法的應用.14、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分別寫成完全平方的形式,再利用平方差公式進行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案為x(x+4)(x﹣4).15、y2<y1<y1【分析】根據(jù)反比例函數(shù)的比例系數(shù)的符號可得反比例函數(shù)所在象限為一、三,其中在第三象限的點的縱坐標總小于在第一象限的縱坐標,進而判斷在同一象限內(nèi)的點(﹣1,y1)和(,y2)的縱坐標的大小即可.【詳解】解:∵反比例函數(shù)的比例系數(shù)為m2+1>0,∴圖象的兩個分支在一、三象限;∵第三象限的點的縱坐標總小于在第一象限的縱坐標,點(﹣1,y1)和(,y2)在第三象限,點(,y1)在第一象限,∴y1最小,∵﹣1<,y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】考查反比例函數(shù)圖象上點的坐標特征;用到的知識點為:反比例函數(shù)的比例系數(shù)小于0,圖象的2個分支在一、三象限;第三象限的點的縱坐標總小于在第一象限的縱坐標;在同一象限內(nèi),y隨x的增大而減?。?6、【解析】∵等腰直角△ABC繞點A逆時針旋轉(zhuǎn)15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.17、-1.【分析】由題意根據(jù)負整數(shù)指數(shù)冪和零指數(shù)冪的定義求解即可.【詳解】解:=1﹣2=﹣1.故答案為:﹣1.【點睛】本題考查負整數(shù)指數(shù)冪和零指數(shù)冪的定義,熟練掌握實數(shù)的運算法則以及負整數(shù)指數(shù)冪和零指數(shù)冪的運算方法是解題的關(guān)鍵.18、.【分析】根據(jù)概率公式計算概率即可.【詳解】∵在正方體骰子中,朝上的數(shù)字共有6種,為奇數(shù)的情況有3種,分別是:1,3,5,∴朝上的數(shù)字為奇數(shù)的概率是=;故答案為:.【點睛】此題考查的是求概率問題,掌握概率公式是解決此題的關(guān)鍵.三、解答題(共78分)19、(1)b=,c=﹣;(2),;(3)點Q的坐標為:(﹣1﹣,)或(,﹣)或(﹣1+,)或(,)或(﹣,﹣).【分析】(1)直線與軸交于點,與軸交于點,則點、的坐標分別為:、,則點,拋物線經(jīng)過點和點,則,將點的坐標代入拋物線表達式并解得:;(2)過點作軸的平行線交于點,設(shè)出點P,H的坐標,將△PAB的面積表示成△APH和△BPH的面積之和,可得函數(shù)表達式,可求△PAB的面積最大值,此時設(shè)點P到AB的距離為d,當△PAB的面積最大值時d最大,利用面積公式求出d.(3)若存在以,,,為頂點且為邊的平行四邊形時,平移AP,得出所有可能的情形,利用平行四邊形的對稱性得到坐標的關(guān)系,即可求解.【詳解】解:(1)直線與軸交于點,與軸交于點,令x=0,則y=,令y=0,則x=-3,則點、的坐標分別為:、,∵點F是點B關(guān)于x軸的對稱點,∴點,∵拋物線經(jīng)過點和點,則,將點代入拋物線表達式得:,解得:,故拋物線的表達式為:,,;(2)過點作軸的平行線交于點,設(shè)點,則點,則的面積:當時,,且,∴的最大值為,此時點,,設(shè):到直線的最大距離為,,解得:;(3)存在,理由:點,點,,設(shè)點,,①當點在軸上時,若存在以,,,為頂點且為邊的平行四邊形時,如圖,三種情形都可以構(gòu)成平行四邊形,由于平行四邊形的對稱性可得圖中點Q到x軸的距離和點P到x軸的距離相等,∴,即,解得:(舍去)或或;②當點在軸上時,如圖:當點Q在y軸右側(cè)時,由平行四邊形的性質(zhì)可得:=3,∴∴m=,代入二次函數(shù)表達式得:y=當點Q在y軸左側(cè)時,由平行四邊形的性質(zhì)可得:=,∴,∴,代入二次函數(shù)表達式得:y=故點,或,;故點的坐標為:,或,或,或,或,.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)、平行四邊形性質(zhì)、圖形的面積計算等,其中(3),要注意分類求解,避免遺漏.20、(1)見解析;(2)2【分析】(1)欲證明PC是⊙O的切線,只要證明OC⊥PC即可;(2)想辦法證明∠P=30°即可解決問題.【詳解】(1)∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直徑,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半徑,∴PC是⊙O的切線;(2)∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴PC==2.【點睛】本題考查了切線的判定,解直角三角形,圓周角定理,正確的識別圖形是解題的關(guān)鍵.21、(1);(2)函數(shù)圖象見解析,性質(zhì):函數(shù)圖象關(guān)于y軸對稱(答案不唯一);(3)不等式的解集為或【分析】(1)根據(jù)待定系數(shù)法進行求解函數(shù)的表達式;(2)結(jié)合(1),將函數(shù)的表達式寫成分段形式,然后進行畫圖,進而求解;(3)結(jié)合(2)中的函數(shù)圖象直接寫出不等式的解集.【詳解】解:(1)∵當時,,,∴,∴;(2)由(1)知,,∴該函數(shù)的圖象如圖所示:性質(zhì):函數(shù)圖象關(guān)于y軸對稱(答案不唯一);(3)由函數(shù)圖象可知,寫出不等式的解集為或.【點睛】本題考查待定系數(shù)法求函數(shù)的表達式,反比例函數(shù)的圖象與性質(zhì),一元一次不等式與一次函數(shù)的關(guān)系,學會畫函數(shù)的圖象與運用數(shù)形結(jié)合的思想是解題的關(guān)鍵.22、(1)二次函數(shù)的解析式為;(2)當時,的面積取得最大值;(3)點的坐標為,,.【解析】分析:(1)把已知點坐標代入函數(shù)解析式,得出方程組求解即可;(2)根據(jù)函數(shù)解析式設(shè)出點D坐標,過點D作DG⊥x軸,交AE于點F,表示△ADE的面積,運用二次函數(shù)分析最值即可;(3)設(shè)出點P坐標,分PA=PE,PA=AE,PE=AE三種情況討論分析即可.詳解:(1)∵二次函數(shù)y=ax2+bx+c經(jīng)過點A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函數(shù)的解析式為:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直線解析式為y=,過點D作DN⊥x軸,交AE于點F,交x軸于點G,過點E作EH⊥DF,垂足為H,如圖,設(shè)D(m,),則點F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴當m=時,△ADE的面積取得最大值為.(3)y=的對稱軸為x=﹣1,設(shè)P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三種情況討論:當PA=PE時,=,解得:n=1,此時P(﹣1,1);當PA=AE時,=,解得:n=,此時點P坐標為(﹣1,);當PE=AE時,=,解得:n=﹣2,此時點P坐標為:(﹣1,﹣2).綜上所述:P點的坐標為:(﹣1,1),(﹣1,),(﹣1,﹣2).點睛:本題主要考查二次函數(shù)的綜合問題,會求拋物線解析式,會運用二次函數(shù)分析三角形面積的最大值,會分類討論解決等腰三角形的頂點的存在問題時解決此題的關(guān)鍵.23、(1)1;(2)【分析】(1)若一元二次方程有兩不等實數(shù)根,則根的判別式△=b2-4ac>0,建立關(guān)于a的不等式,求出a的取值范圍,進而得出a的最小整數(shù)值;(2)利用根與系數(shù)的關(guān)系得出x1+x2和x1x2,進而得出關(guān)于a的一元二次方程求出即可.【詳解】(1)∵原方程有兩個不相等的實數(shù)根,,,,∴,且,∴,故的最小整數(shù)值為1;(2)由題意:,∵,∴,∴,∴,整理,得:,解之,得:,滿足,故的值為:.【點睛】本題考查了一元二次方程根的判別式以及根與系數(shù)的關(guān)系.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.24、(1);(1)x1=﹣3,x1=1.【分析】(1)用配方法即可得出結(jié)論;(1)整理后用因式分解法即可得到結(jié)論.【詳解】(1)∵x1﹣4x+1=0,∴x1﹣4x+4=1,∴(x﹣1)1=1,∴;(1)∵(x﹣1)(x+1)=4,∴x1+x﹣6=0,∴(x+3)(x﹣1)=0,∴x1=﹣3,x1=1.【點睛】本題考查了一元二次方程,解答本題的關(guān)鍵是熟練運用一元二次方程的解法,本題屬于基礎(chǔ)題型.25、(1)①菱形,理由見解析;②AF=1;(2)秒.【分析】(1)①先證明四邊形ABCD為平行四邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論