佛山市重點中學2025屆九上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
佛山市重點中學2025屆九上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
佛山市重點中學2025屆九上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
佛山市重點中學2025屆九上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
佛山市重點中學2025屆九上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

佛山市重點中學2025屆九上數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,已知AB∥CD∥EF,它們依次交直線l1、l2于點A、D、F和點B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A. B. C. D.2.在△ABC中,∠C=90°,∠B=30°,則cosA的值是()A. B. C. D.13.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小4.如圖,□ABCD中,點E是邊AD的中點,EC交對角線BD于點F,則EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:25.在一個不透明的袋子里裝有若干個白球和15個黃球,這些球除顏色不同外其余均相同,每次從袋子中摸出一個球記錄下顏色后再放回,經過很多次重復試驗,發(fā)現(xiàn)摸到黃球的頻率穩(wěn)定在0.75,則袋中白球有()A.5個 B.15個 C.20個 D.35個6.程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.對書中某一問題改編如下:意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個正好分完,大和尚共分得()個饅頭A.25 B.72 C.75 D.907.國家規(guī)定存款利息的納稅辦法是:利息稅=利息×20%,銀行一年定期儲蓄的年利率為2.25%,今小王取出一年到期的本金和利息時,交納利息稅4.5元,則小王一年前存入銀行的錢為().A.1000元 B.977.5元 C.200元 D.250元8.如圖,矩形ABCD的對角線AC,BD相交于點O,CE∥BD,DE∥AC,若OA=2,則四邊形CODE的周長為()A.4 B.6 C.8 D.109.二次函數(shù)的圖象如圖所示,其對稱軸為,有下列結論:①;②;③;④對任意的實數(shù),都有,其中正確的是()A.①② B.①④ C.②③ D.②④10.如圖為4×4的正方形網格,A,B,C,D,O均在格點上,點O是()A.△ACD的外心 B.△ABC的外心 C.△ACD的內心 D.△ABC的內心二、填空題(每小題3分,共24分)11.若點、在二次函數(shù)的圖象上,則的值為________.12.為了估計一個不透明的袋子中白球的數(shù)量袋中只有白球,現(xiàn)將5個紅球放進去這些球除顏色外均相同隨機摸出一個球記下顏色后放回每次摸球前先將袋中的球搖勻,通過多次重復摸球試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于,由此可估計袋中白球的個數(shù)大約為______.13.如圖,△OAB的頂點A的坐標為(3,),B的坐標為(4,0);把△OAB沿x軸向右平移得到△CDE,如果D的坐標為(6,),那么OE的長為_____.14.如果向量a、b、x滿足關系式2a﹣(x﹣3b)=4b,那么x=_____(用向量a、b表示).15.如圖,小華同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,使斜邊DF與地面保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊,,測得邊DF離地面的高度,,則樹AB的高度為_______cm.16.邊長為1的正方形,在邊上取一動點,連接,作,交邊于點,若的長為,則的長為__________.17.觀察下列各式:;;;則_______________________.18.如圖,已知⊙的半徑為1,圓心在拋物線上運動,當⊙與軸相切時,圓心的坐標是___________________.三、解答題(共66分)19.(10分)解方程:-2=3(-x).20.(6分)在如圖所示的平面直角坐標系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1).(1)畫出△ABC;(2)畫出△ABC關于x軸對稱的△A1B1C1,并寫出A1點的坐標:;(3)以O為位似中心,在第一象限內把△ABC擴大到原來的兩倍,得到△A2B2C2,并寫出A2點的坐標:.21.(6分)已知二次函數(shù)的圖象和軸交于點、,與軸交于點,點是直線上方的拋物線上的動點.(1)求直線的解析式.(2)當是拋物線頂點時,求面積.(3)在點運動過程中,求面積的最大值.22.(8分)因抖音等新媒體的傳播,西安已成為最著名的網紅旅游城市之一,2018年“十一”黃金周期間,接待游客已達萬人次,古城西安美食無數(shù),一家特色小面店希望在長假期間獲得較好的收益,經測算知,該小面的成本價為每碗元,借鑒以往經驗;若每碗小面賣元,平均每天能夠銷售碗,若降價銷售,毎降低元,則平均每天能夠多銷售碗.為了維護城市形象,店家規(guī)定每碗小面的售價不得超過元,則當每碗小面的售價定為多少元時,店家才能實現(xiàn)每天盈利元?23.(8分)今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關系,如圖是y與x的函數(shù)關系圖象.(1)求y與x的函數(shù)解析式(也稱關系式),請直接寫出x的取值范圍;(2)設該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.24.(8分)如圖,在平面直角坐標系中,正六邊形ABCDEF的對稱中心P在反比例函數(shù)的圖象上,邊CD在x軸上,點B在y軸上.已知.(1)點A是否在該反比例函數(shù)的圖象上?請說明理由.(2)若該反比例函數(shù)圖象與DE交于點Q,求點Q的橫坐標.(3)平移正六邊形ABCDEF,使其一邊的兩個端點恰好都落在該反比例函數(shù)的圖象上,試描述平移過程.25.(10分)如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.26.(10分)如圖,,,求的值.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)平行線分線段成比例定理得到,得到BC=3CE,然后利用BC+CE=BE=10可計算出CE的長,即可.【詳解】解:∵AB∥CD∥EF,

∴,

∴BC=3CE,

∵BC+CE=BE,

∴3CE+CE=10,

∴CE=.

故選C.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.2、A【分析】根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:∵△ABC中,∠C=90°,∠B=30°,∴∠A=90°-30°=60°.cosA=cos60°=.故選:A.【點睛】本題考查了特殊角的三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.3、C【詳解】由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【點睛】本題屬于對反比例函數(shù)的基本性質以及反比例函數(shù)的在各個象限單調性的變化4、D【分析】根據(jù)題意得出△DEF∽△BCF,進而得出,利用點E是邊AD的中點得出答案即可.【詳解】解:∵?ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵點E是邊AD的中點,∴AE=DE=AD,∴.故選D.5、A【分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:設袋中白球有x個,根據(jù)題意得:=0.75,解得:x=5,經檢驗:x=5是分式方程的解,故袋中白球有5個.故選A.【點睛】此題考查了利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=是解題關鍵.6、C【分析】設有x個大和尚,則有(100-x)個小和尚,根據(jù)饅頭數(shù)=3×大和尚人數(shù)+×小和尚人數(shù)結合共分100個饅頭,即可得出關于x的一元一次方程,解之即可得出結論;【詳解】解:設有x個大和尚,則有(100?x)個小和尚,依題意,得:3x+(100?x)=100,解得:x=25,∴3x=75;故選:C.【點睛】本題主要考查了一元一次方程的應用,掌握一元一次方程的應用是解題的關鍵.7、A【分析】利息問題是一個難點,要把握好利息、本金、利息稅的概念,由利息稅可求得利息為4.5÷20%=22.5元,根據(jù)年利率又可求得本金.【詳解】解:據(jù)題意得:利息為4.5÷20%=22.5元本金為22.5÷2.25%=1000元.故選:A.【點睛】本題考查利息問題,此題關系明確,關鍵是分清利息、本金、利息稅的概念.8、C【分析】首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質,易得OC=OD=2,即可判定四邊形CODE是菱形,繼而求得答案.【詳解】解:∵CE∥BD,DE∥AC,

∴四邊形CODE是平行四邊形,

∵四邊形ABCD是矩形,

∴AC=BD,OA=OC=2,OB=OD,

∴OD=OC=2,

∴四邊形CODE是菱形,

∴四邊形CODE的周長為:4OC=4×2=1.

故選:C.【點睛】此題考查了菱形的判定與性質以及矩形的性質.此題難度不大,注意證得四邊形CODE是菱形是解此題的關鍵.9、B【分析】根據(jù)二次函數(shù)的圖象與性質(對稱性、與x軸、y軸的交點)、二次函數(shù)與一元二次方程的關系逐個判斷即可.【詳解】拋物線的開口向下對稱軸為,異號,則拋物線與y軸的交點在y軸的上方,則①正確由圖象可知,時,,即則,②錯誤由對稱性可知,和的函數(shù)值相等則時,,即,③錯誤可化為關于m的一元二次方程的根的判別式則二次函數(shù)的圖象特征:拋物線的開口向下,與x軸只有一個交點因此,,即,從而④正確綜上,正確的是①④故選:B.【點睛】本題考查了二次函數(shù)的圖象與性質(對稱性、與x軸、y軸的交點)、二次函數(shù)與一元二次方程的關系,熟練掌握函數(shù)的圖象與性質是解題關鍵.10、B【解析】試題解析:由圖可得:OA=OB=OC=,所以點O在△ABC的外心上,故選B.二、填空題(每小題3分,共24分)11、-1【分析】利用拋物線的對稱性得到點A和點B為拋物線上的對稱點,根據(jù)二次函數(shù)的性質得到拋物線的對稱軸為直線x=?2,從而得到m?(?2)=?2?(?3),然后解方程即可.【詳解】∵點A(?3,n)、B(m,n),∴點A和點B為拋物線上的對稱點,∵二次函數(shù)的圖象的對稱軸為直線x=?2,∴m?(?2)=?2?(?3),∴m=?1.故答案為:?1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質.12、20個【解析】∵通過大量重復摸球試驗后發(fā)現(xiàn),摸到紅球的頻率是0.2,口袋中有5個紅球,∵假設有x個白球,∴=0.2,解得:x=20,∴口袋中有白球約有20個.故答案為20個.13、7【分析】根據(jù)平移的性質得到AD=BE=6﹣3=3,由B的坐標為(4,0),得到OB=4,根據(jù)OE=OB+BE即可得答案.【詳解】∵點A的坐標為(3,),點D的坐標為(6,),把△OAB沿x軸向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐標為(4,0),∴OB=4,∴OE=OB+BE=7,故答案為:7【點睛】本題考查圖形平移的性質,平移不改變圖形的形狀和大?。粓D形經過平移,對應線段相等,對應角相等,對應點所連的線段相等.14、2a﹣b【解析】根據(jù)平面向量的加減法計算法則和方程解題.【詳解】2a2ax=2故答案是2a【點睛】本題主要考查平面向量,此題是利用方程思想求得向量的值的,難度不大.15、420【分析】先判定△DEF和△DBC相似,然后根據(jù)相似三角形對應邊成比例列式求出BC的長,再加上AC即可得解.【詳解】解:在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴,解得BC=300cm,∵,∴AB=AC+BC=120+300=420m,即樹高420m.故答案為:420.【點睛】本題考查了相似三角形的應用,主要利用了相似三角形對應邊成比例的性質,比較簡單,判定出△DEF和△DBC相似是解題的關鍵.16、或【分析】根據(jù)正方形的內角為90°,以及同角的余角相等得出三角形的兩個角相等,從而推知△ABE∽△ECF,得出,代入數(shù)值得到關于CE的一元二次方程,求解即可.【詳解】解:∵正方形ABCD,

∴∠B=∠C,∠BAE+∠BEA=90°,

∵EF⊥AE,

∴∠BEA+∠CEF=90°,

∴∠BAE=∠CEF,

∴△ABE∽△ECF,.解得,CE=或.故答案為:或.【點睛】考查了四邊形綜合題型,需要掌握三角形相似的判定與性質,正方形的性質以及一元二次方程的應用,解題的關鍵是根據(jù)相似三角形得出一元二次方程,難度不大.17、【分析】由所給式子可知,()()=,根據(jù)此規(guī)律解答即可.【詳解】由題意知()()=,∴.故答案為.【點睛】本題考查了規(guī)律型---數(shù)字類規(guī)律與探究,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.18、或或或【分析】根據(jù)圓與直線的位置關系可知,當⊙與軸相切時,P點的縱坐標為1或-1,把1或-1代入到拋物線的解析式中求出橫坐標即可.【詳解】∵⊙的半徑為1,∴當⊙與軸相切時,P點的縱坐標為1或-1.當時,,解得,∴此時P的坐標為或;當時,,解得,∴此時P的坐標為或;故答案為:或或或.【點睛】本題主要考查直線與圓的位置關系和已知函數(shù)值求自變量,根據(jù)圓與x軸相切找到點P的縱坐標的值是解題的關鍵.三、解答題(共66分)19、【分析】去括號化簡,利用直接開平方法可得x的值.【詳解】解:化簡得解得所以【點睛】本題考查了二元一次方程,其解法有直接開平方法、公式法、配方法、,根據(jù)二元一次方程的特點選擇合適的解法是解題的關鍵.20、(1)詳見解析;(2)詳見解析,A1(﹣3,3);(3)詳見解析,A2(6,6).【解析】(1)根據(jù)A、B、C三點坐標畫出圖形即可;(2)作出A、B、C關于軸的對稱點A1、B1、C1即可;(3)延長OC到C2,使得OC2=2OC,同法作出A2,B2即可;【詳解】(1)△ABC如圖所示;(2)△A1B1C1如圖所示;A1(﹣3,3),(3)△A2B2C2如圖所示;A2(6,6).故答案為(﹣3,3),(6,6).【點睛】本題考查作圖﹣位似變換,軸對稱變換等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1);(2)3;(3)面積的最大值為.【分析】(1)由題意分別將x=0、y=0代入二次函數(shù)解析式中求出點C、A的坐標,再根據(jù)點A、C的坐標利用待定系數(shù)法即可求出直線AC的解析式;(2)由題意先根據(jù)二次函數(shù)解析式求出頂點,進而利用割補法求面積;(3)根據(jù)題意過點作軸交于點并設點的坐標為(),則點的坐標為進而進行分析.【詳解】解:(1)分別將x=0、y=0代入二次函數(shù)解析式中求出點C、A的坐標為;;將;代入,得到直線的解析式為.(2)由,將其化為頂點式為,可知頂點P為,如圖P為頂點時連接PC并延長交x軸于點G,則有,將P點和C點代入求出PC的解析式為,解得G為,所有=3;(3)過點作軸交于點.設點的坐標為(),則點的坐標為∴,當時,取最大值,最大值為.∵,∴面積的最大值為.【點睛】本題考查待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、等腰三角形的性質、二次函數(shù)的性質以及解二元一次方程組,解題的關鍵是利用待定系數(shù)法求出直線解析式以及利用二次函數(shù)的性質進行綜合分析.22、當每碗售價定為元時,店家才能實現(xiàn)每天利潤.【分析】可設每碗售價定為x元時,店家才能實現(xiàn)每天利潤6300元,根據(jù)利潤的等量關系列出方程求解即可.【詳解】設每碗售價定為元時,店家才能實現(xiàn)每天利潤元,依題意有,解得,每碗售價不得超過元,.答:當每碗售價定為元時,店家才能實現(xiàn)每天利潤.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.23、(1)y=﹣2x+340(20≤x≤40);(2)5200【解析】試題分析:(1)待定系數(shù)法求解可得;(2)根據(jù):總利潤=每千克利潤×銷售量,列出函數(shù)關系式,配方后根據(jù)x的取值范圍可得W的最大值.試題解析:(1)設y與x的函數(shù)關系式為y=kx+b,根據(jù)題意,得:,解得:,∴y與x的函數(shù)解析式為y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴當x≤95時,W隨x的增大而增大,∵20≤x≤40,∴當x=40時,W最大,最大值為﹣2(40﹣95)2+11250=5200元.考點:二次函數(shù)的應用24、(1)點A在該反比例函數(shù)的圖像上,見解析;(2)Q的橫坐標是;(3)見解析.【分析】(1)連接PC,過點P作軸于點H,由此可求得點P的坐標為(2,);即可求得反比例函數(shù)的解析式為,連接AC,過點B作于點C,求得點A的坐標,由此即可判定點A是否在該反比例函數(shù)的圖象上;(2)過點Q作軸于點M,設,則,由此可得點Q的坐標為,根據(jù)反比例函數(shù)圖象上點的性質

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論