版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.20° C.15° D.30°2.一元二次方程mx2+mx﹣=0有兩個相等實數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.23.正五邊形內(nèi)接于圓,連接分別與交于點,,連接若,下列結(jié)論:①②③四邊形是菱形④;其中正確的個數(shù)為()A.個 B.個 C.個 D.個4.下列四幅圖案,在設(shè)計中用到了中心對稱的圖形是()A. B. C. D.5.是四邊形的外接圓,平分,則正確結(jié)論是()A. B. C. D.6.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=27.下列二次根式能與合并的是()A. B. C. D.8.已知一個扇形的半徑為60cm,圓心角為180°,若用它做成一個圓錐的側(cè)面,則這個圓錐的底面半徑為()A.15cm B.20cm C.25cm D.30cm9.下列判斷正確的是()A.對角線互相垂直的平行四邊形是菱形 B.兩組鄰邊相等的四邊形是平行四邊形C.對角線相等的四邊形是矩形 D.有一個角是直角的平行四邊形是正方形10.如圖所示,河堤橫斷面迎水坡AB的坡比是1:,堤高BC=5m,則坡面AB的長度是()A.10m B.10m C.15m D.5m二、填空題(每小題3分,共24分)11.如圖,的直徑AB與弦CD相交于點,則______.12.若等腰三角形的兩邊長恰為方程的兩實數(shù)根,則的周長為________________.13.若,則=___________.14.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.15.已知正方形ABCD的對角線長為8cm,則正方形ABCD的面積為_____cm1.16.如圖,將邊長為4的正方形沿其對角線剪開,再把沿著方向平移,得到,當兩個三角形重疊部分的面積為3時,則的長為_________.17.一圓錐的母線長為5,底面半徑為3,則該圓錐的側(cè)面積為________.18.某校五個綠化小組一天的植樹的棵數(shù)如下:9,10,12,x,1.已知這組數(shù)據(jù)的平均數(shù)是10,那么這組數(shù)據(jù)的方差是_____.三、解答題(共66分)19.(10分)如圖,在矩形中,,為邊上一點,把沿直線折疊,頂點折疊到,連接與交于點,連接與交于點,若.(1)求證:;(2)當時,,求的長;(3)連接,直接寫出四邊形的形狀:.當時,并求的值.20.(6分)如圖,已知二次函數(shù)y=ax1+4ax+c(a≠0)的圖象交x軸于A、B兩點(A在B的左側(cè)),交y軸于點C.一次函數(shù)y=﹣x+b的圖象經(jīng)過點A,與y軸交于點D(0,﹣3),與這個二次函數(shù)的圖象的另一個交點為E,且AD:DE=3:1.(1)求這個二次函數(shù)的表達式;(1)若點M為x軸上一點,求MD+MA的最小值.21.(6分)(1)已知關(guān)于x的一元二次方程x2+(a+3)x+a+1=1.求證:無論a取何值,原方程總有兩個不相等的實數(shù)根:(2)已知:二次函數(shù)y=ax2+bx+c(a≠1)中的x和y滿足下表:x…﹣11123…y…31﹣11m…①觀察上表可求得m的值為;②試求出這個二次函數(shù)的解析式.22.(8分)已知:如圖,中,平分,是上一點,且.判斷與的數(shù)量關(guān)系并證明.23.(8分)某苗圃用花盆培育某種花苗,經(jīng)過試驗發(fā)現(xiàn),每盆植人3株時,平均每株盈利3元.在同樣的栽培條件下,若每盆增加1株,平均每株盈利就減少0.5元,要使每盆的盈利為10元,且每盆植入株數(shù)盡可能少,每盆應(yīng)植入多少株?24.(8分)如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F(xiàn),使AE=CF,依次連接B,F(xiàn),D,E各點.(1)求證:△BAE≌△BCF;(2)若∠ABC=50°,則當∠EBA=°時,四邊形BFDE是正方形.25.(10分)2019年度雙十一在九龍坡區(qū)楊家坪的各大知名商場舉行“國產(chǎn)家用電器惠民搶購日”優(yōu)惠促銷大行動,許多家用電器經(jīng)銷商都利用這個契機進行打折促銷活動.商社電器某國產(chǎn)品牌經(jīng)銷商的某款超高清大屏幕液晶電視機每套成本為4000元,在標價6000元的基礎(chǔ)上打9折銷售.(1)現(xiàn)在該經(jīng)銷商欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于?(2)據(jù)媒體爆料,有一些經(jīng)銷商先提高商品價格后再降價促銷,存在欺詐行為.重百電器另一個該品牌的經(jīng)銷商也銷售相同的超高清大屏幕液晶電視機,其成本、標價與商社電器的經(jīng)銷商一致,以前每周可售出20臺,現(xiàn)重百的經(jīng)銷商先將標價提高,再大幅降價元,使得這款電視機在2019年11月11日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了,這樣一天的利潤達到22400元,求的值.(利潤=售價-成本)26.(10分)如圖,雙曲線與直線相交于點(點在第一象限),其橫坐標為2.(1)求的值;(2)若兩個圖像在第三象限的交點為,則點的坐標為;(3)點為此反比例函數(shù)圖像上一點,其縱坐標為3,過點作,交軸于點,直接寫出線段的長.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)圓周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等邊對等角即可求解答.【詳解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案為A.【點睛】本題考查了圓周角定理和平行線的性質(zhì),靈活應(yīng)用所學(xué)定理以及數(shù)形結(jié)合思想的應(yīng)用都是解答本題的關(guān)鍵.2、C【解析】由方程有兩個相等的實數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.3、B【分析】①先根據(jù)正五方形ABCDE的性質(zhì)求得∠ABC,由等邊對等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②證明△ABF∽△ACB,得,代入可得BF的長;③先證明CF∥DE且,證明四邊形CDEF是平行四邊形,再由證得答案;④根據(jù)平行四邊形的面積公式可得:,即可求得答案.【詳解】①∵五方形ABCDE是正五邊形,,
∴,
∴,
∴,
同理得:,
∵,,
∴,
∵,∴,∴,則,
∴,
∵,
∴,
∴,
∴;
所以①正確;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,
∴△ABF∽△ACB,
∴,∵,∴,∵,∴,∴,解得:(負值已舍);所以②正確;③∵,,
∴,
∴CF∥DE,
∵,
∴四邊形CDEF是平行四邊形,∵,∴四邊形CDEF是菱形,所以③正確;④如圖,過D作DM⊥EG于M,
同①的方法可得,,
∴,,∴,所以④錯誤;綜上,①②③正確,共3個,故選:B【點睛】本題考查了相似三角形的判定和性質(zhì),勾股定理,圓內(nèi)接正五邊形的性質(zhì)、平行四邊形和菱形的判定和性質(zhì),有難度,熟練掌握圓內(nèi)接正五邊形的性質(zhì)是解題的關(guān)鍵.4、D【解析】由題意根據(jù)中心對稱圖形的性質(zhì)即圖形旋轉(zhuǎn)180°與原圖形能夠完全重合的圖形是中心對稱圖形,依次對選項進行判斷即可.【詳解】解:A.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;B.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;C.旋轉(zhuǎn)180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;D.旋轉(zhuǎn)180°,能與原圖形能夠完全重合是中心對稱圖形;故此選項正確;故選:D.【點睛】本題主要考查中心對稱圖形的性質(zhì),根據(jù)中心對稱圖形的定義判斷圖形是解決問題的關(guān)鍵.5、B【分析】根據(jù)圓心角、弧、弦的關(guān)系對結(jié)論進行逐一判斷即可.【詳解】解:與的大小關(guān)系不確定,與不一定相等,故選項A錯誤;平分,,,故選項B正確;與的大小關(guān)系不確定,與不一定相等,選項C錯誤;∵與的大小關(guān)系不確定,選項D錯誤;故選B.【點睛】本題考查的是圓心角、弧、弦的關(guān)系,在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.6、C【解析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是1;(1)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、不是方程,故本選項錯誤;B、方程含有兩個未知數(shù),故本選項錯誤;C、符合一元二次方程的定義,故本選項正確;D、不是整式方程,故本選項錯誤.故選:C.【點睛】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.7、C【分析】化為最簡二次根式,然后根據(jù)同類二次根式的定義解答.【詳解】解:的被開方數(shù)是3,而=、=2、是最簡二次根式,不能再化簡,以上三數(shù)的被開方數(shù)分別是2、2、15,所以它們不是同類二次根式,不能合并,即選項A、B、D都不符合題意,=2的被開方數(shù)是3,與是同類二次根式,能合并,即選項C符合題意.故選:C.【點睛】本題考查同類二次根式的定義:化成最簡二次根式后,被開方數(shù)相同,這樣的二次根式叫做同類二次根式.8、D【分析】根據(jù)底面周長=展開圖的弧長可得出結(jié)果.【詳解】解:設(shè)這個圓錐的底面半徑為r,
根據(jù)題意得2πr=,
解得r=30(cm),
即這個圓錐的底面半徑為30cm.
故選:D.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、A【分析】利用特殊四邊形的判定定理逐項判斷即可.【詳解】A、對角線互相垂直的平行四邊形是菱形,此項正確B、兩組對邊分別相等的四邊形是平行四邊形,此項錯誤C、對角線相等的平行四邊形是矩形,此項錯誤D、有一個角是直角的平行四邊形是矩形,此項錯誤故選:A.【點睛】本題考查了特殊四邊形(平行四邊形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解題關(guān)鍵.10、A【解析】試題分析:河堤橫斷面迎水坡AB的坡比是,即,∴∠BAC=30°,∴AB=2BC=2×5=10,故選A.考點:解直角三角形二、填空題(每小題3分,共24分)11、【解析】分析:由已知條件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,結(jié)合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.詳解:∵AB是的直徑,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=,∴tan∠ABC=,又∵∠ADC=∠ABC,∴tan∠ADC=.故答案為:.點睛:熟記“圓的相關(guān)性質(zhì)和正切函數(shù)的定義”解得本題的關(guān)鍵.12、1【分析】先求出一元二次方程的解,再進行分類討論求周長即可.【詳解】,解得:,,當?shù)妊切蔚娜叿謩e為3,3,6時,3+3=6,不滿足三邊關(guān)系,故該等腰三角形不存在;當?shù)妊切蔚娜叿謩e為6,6,3時,滿足三邊關(guān)系,該等腰三角形的周長為:6+6+3=1.故答案為:1.【點睛】本題考查一元二次方程的解法與等腰三角形的結(jié)合,做題時需注意等腰三角形中邊的分類討論及判斷是否滿足三邊關(guān)系.13、【分析】根據(jù)題干信息,利用已知得出a=b,進而代入代數(shù)式求出答案即可.【詳解】解:∵,∴a=b,∴=.故答案為:.【點睛】本題主要考查比例的性質(zhì),正確得出a=b,并利用代入代數(shù)式求值是解題關(guān)鍵.14、【解析】設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.15、31【分析】根據(jù)正方形的對角線相等且互相垂直,正方形是特殊的菱形,菱形的面積等于對角線乘積的一半進行求解即可.【詳解】解:∵四邊形ABCD為正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面積=×AC×BD=31cm1,故答案為:31.【點睛】本題考查了求解菱形的面積,屬于簡單題,熟悉求解菱形面積的特殊方法是解題關(guān)鍵.16、1或1【分析】設(shè)AC、交于點E,DC、交于點F,且設(shè),則,,列出方程即可解決問題.【詳解】設(shè)AC、交于點E,DC、交于點F,且設(shè),則,,重疊部分的面積為,由,解得或1.即或1.故答案是1或1.【點睛】本題考查了平移的性質(zhì)、菱形的判定和正方形的性質(zhì)綜合,準確分析題意是解題的關(guān)鍵.17、15π【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】圓錐的側(cè)面積=?2π?3?5=15π.
故答案是:15π.【點睛】考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.18、2【分析】首先根據(jù)平均數(shù)確定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],計算方差即可.【詳解】∵組數(shù)據(jù)的平均數(shù)是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案為:2.【點睛】本題考查了方差,一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.三、解答題(共66分)19、(1)見解析;(2);(3)菱形,24【分析】(1)由題意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,則可證△ABE∽△DEC;
(2)設(shè)AE=x,則DE=13-x,由相似三角形的性質(zhì)可得,即:,可求x的值,即可得DE=9,根據(jù)勾股定理可求CE的長;
(3)由折疊的性質(zhì)可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行線的性質(zhì)可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,則四邊形C'QCP是菱形,通過證△C'EQ∽△EDC,可得,即可求CE?EQ的值.【詳解】證明:(1)∵CE⊥BE,
∴∠BEC=90°,
∴∠AEB+∠CED=90°,
又∵∠ECD+∠CED=90°,
∴∠AEB=∠ECD,
又∵∠A=∠D=90°,
∴△ABE∽△DEC
(2)設(shè)AE=x,則DE=13-x,
由(1)知:△ABE∽△DEC,
∴,即:
∴x2-13x+36=0,
∴x1=4,x2=9,
又∵AE<DE
∴AE=4,DE=9,
在Rt△CDE中,由勾股定理得:
(3)如圖,
∵折疊,
∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,
∵CE⊥BC',∠BC'P=90°,
∴CE∥C'P,
∴∠C'PQ=∠CQP,
∴∠CQP=∠CPQ,
∴CQ=CP,
∴CQ=CP=C'Q=C'P,
∴四邊形C'QCP是菱形,
故答案為:菱形
∵四邊形C'QCP是菱形,
∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD
又∵∠C'EQ=∠D=90°
∴△C'EQ∽△EDC
∴
即:CE?EQ=DC?C'Q=6×4=24【點睛】本題是相似形綜合題,考查了矩形的性質(zhì),菱形的判定和性質(zhì),折疊的性質(zhì),相似三角形的判定和性質(zhì),勾股定理等性質(zhì),靈活運用相關(guān)的性質(zhì)定理、綜合運用知識是解題的關(guān)鍵.20、(1);(1).【分析】(1)先把D點坐標代入y=﹣x+b中求得b,則一次函數(shù)解析式為y=﹣x﹣3,于是可確定A(﹣6,0),作EF⊥x軸于F,如圖,利用平行線分線段成比例求出OF=4,接著利用一次函數(shù)解析式確定E點坐標為(4,﹣5),然后利用待定系數(shù)法求拋物線解析式;(1)作MH⊥AD于H,作D點關(guān)于x軸的對稱點D′,如圖,則D′(0,3),利用勾股定理得到AD=3,再證明Rt△AMH∽Rt△ADO,利用相似比得到MH=AM,加上MD=MD′,MD+MA=MD′+MH,利用兩點之間線段最短得到當點M、H、D′共線時,MD+MA的值最小,然后證明Rt△DHD′∽Rt△DOA,利用相似比求出D′H即可.【詳解】解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函數(shù)解析式為y=﹣x﹣3,當y=0時,﹣x﹣3=0,解得x=﹣6,則A(﹣6,0),作EF⊥x軸于F,如圖,∵OD∥EF,∴==,∴OF=OA=4,∴E點的橫坐標為4,當x=4時,y=﹣x﹣3=﹣5,∴E點坐標為(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=ax1+4ax+c得,解得,∴拋物線解析式為;(1)作MH⊥AD于H,作D點關(guān)于x軸的對稱點D′,如圖,則D′(0,3),在Rt△OAD中,AD==3,∵∠MAH=∠DAO,∴Rt△AMH∽Rt△ADO,∴=,即=,∴MH=AM,∵MD=MD′,∴MD+MA=MD′+MH,當點M、H、D′共線時,MD+MA=MD′+MH=D′H,此時MD+MA的值最小,∵∠D′DH=∠ADO,∴Rt△DHD′∽Rt△DOA,∴=,即=,解得D′H=,∴MD+MA的最小值為.【點睛】此題主要考查二次函數(shù)綜合,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì)、相似三角形的判定與性質(zhì)及數(shù)形結(jié)合能力.21、(2)證明見解析;(2)①3;②y=(x﹣2)2﹣2.【分析】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,即可求解;(2)①函數(shù)的對稱軸為:x=2,根據(jù)函數(shù)的對稱軸知,m=3,即可求解;②函數(shù)的頂點坐標為(2,﹣2),故拋物線的表達式為:y=a(x﹣2)2﹣2,將(2,2)代入上式并解得:a=2,即可求解.【詳解】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,故無論a取何值,原方程總有兩個不相等的實數(shù)根;(2)①函數(shù)的對稱軸為:x=2,根據(jù)函數(shù)的對稱性可得,m=3,故答案為:3;②函數(shù)的頂點坐標為(2,﹣2),故拋物線的表達式為:y=a(x﹣2)2﹣2,將(2,2)代入上式得:2=a(2﹣2)2﹣2,解得:a=2,故拋物線的表達式為:y=(x﹣2)2﹣2.【點睛】此題考查一元二次方程根的判別式,二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)的解析式,此題中能讀懂表格中的數(shù)值變化是解題的關(guān)鍵.22、,理由見解析.【分析】根據(jù)題意,先證明∽,則,得到,然后得到結(jié)論成立.【詳解】證明:;理由如下:如圖:∵平分,∴,∵,∴∽,∴,∴,∴.【點睛】本題考查了相似三角形的判定和性質(zhì),以及等角對等邊,解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題.23、4株【分析】根據(jù)已知假設(shè)每盆花苗增加株,則每盆花苗有株,得出平均單株盈利為元,由題意得求出即可?!驹斀狻拷猓涸O(shè)每盆花苗增加株,則每盆花苗有株,平均單株盈利為:元,由題意得:.化簡,整理,.解這個方程,得,,則,,每盆植入株數(shù)盡可能少,盆應(yīng)植4株.答:每盆應(yīng)植4株.【點睛】此題考查了一元二次方程的應(yīng)用,根據(jù)每盆花苗株數(shù)平均單株盈利總盈利得出方程是解題關(guān)鍵.24、(1)證明見試題解析;(2)1.【分析】(1)先證∠BAE=∠BCF,又由BA=BC,AE=CF,得到△BAE≌△BCF;(2)由已知可得四邊形BFDE對角線互相垂直平分,只要∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年大數(shù)據(jù)中心機房建設(shè)工程合同
- 2024年廣告媒體采購發(fā)布合同
- 2024城市公園環(huán)境衛(wèi)生承包協(xié)議
- 2024年工程貸款協(xié)議模板助力項目發(fā)展
- 2024年危險品運輸合同范本
- 2024年應(yīng)急通信系統(tǒng)設(shè)備采購及安裝合同
- 2024年工程質(zhì)量檢測居間合同
- 2024年雙方共同投資建立教育咨詢公司的合同
- 挑食偏食課件教學(xué)課件
- 2024婚姻關(guān)系解除后債務(wù)清償合同
- 河北省石家莊市長安區(qū)2023-2024學(xué)年五年級上學(xué)期期中英語試卷
- 品牌經(jīng)理招聘筆試題及解答(某大型國企)2025年
- 多能互補規(guī)劃
- 珍愛生命主題班會
- 《網(wǎng)絡(luò)數(shù)據(jù)安全管理條例》課件
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 第7課《回憶我的母親》課件-2024-2025學(xué)年統(tǒng)編版語文八年級上冊
- 八年級歷史上冊(部編版)第六單元中華民族的抗日戰(zhàn)爭(大單元教學(xué)設(shè)計)
- 公司研發(fā)項目審核管理制度
- 《詩意的色彩》課件 2024-2025學(xué)年人美版(2024)初中美術(shù)七年級上冊
- 小學(xué)生主題班會《追夢奧運+做大家少年》(課件)
評論
0/150
提交評論