版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟南市中學2025屆九年級數(shù)學第一學期期末統(tǒng)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,DC是⊙O的直徑,弦AB⊥CD于點F,連接BC,BD,則錯誤結論為()A.OF=CF B.AF=BF C. D.∠DBC=90°2.如圖,在圓O中,弦AB=4,點C在AB上移動,連接OC,過點C作CD⊥OC交圓O于點D,則CD的最大值為()A. B.2 C. D.3.如圖,在正方形中,點為邊的中點,點在上,,過點作交于點.下列結論:①;②;③;④.正確的是(
).A.①② B.①③ C.①③④ D.③④4.如圖,AB是半圓O的直徑,弦AD、BC相交于點P,若∠DPB=α,那么等于()A.tanα B.sina C.cosα D.5.在數(shù)軸上,點A所表示的實數(shù)為3,點B所表示的實數(shù)為a,⊙A的半徑為2,下列說法中不正確的是()A.當1<a<5時,點B在⊙A內B.當a<5時,點B在⊙A內C.當a<1時,點B在⊙A外D.當a>5時,點B在⊙A外6.已知x2+y=3,當1≤x≤2時,y的最小值是()A.-1 B.2 C.2.75 D.37.若x1是方程(a≠0)的一個根,設,,則p與q的大小關系為()A.p<q B.p=q C.p>q D.不能確定8.一次函數(shù)y=﹣3x+b圖象上有兩點A(x1,y1),B(x2,y2),若x1<x2,則y1,y2的大小關系是()A.y1>y2 B.y1<y2C.y1=y(tǒng)2 D.無法比較y1,y2的大小9.(11·大連)某農科院對甲、乙兩種甜玉米各用10塊相同條件的試驗田進行試驗,得到兩個品種每公頃產量的兩組數(shù)據(jù),其方差分別為s甲2=0.002、s乙2=0.03,則()A.甲比乙的產量穩(wěn)定 B.乙比甲的產量穩(wěn)定C.甲、乙的產量一樣穩(wěn)定 D.無法確定哪一品種的產量更穩(wěn)定10.下列函數(shù)中是反比例函數(shù)的是()A. B. C. D.二、填空題(每小題3分,共24分)11.兩個相似多邊形的一組對應邊分別為2cm和3cm,那么對應的這兩個多邊形的面積比是__________12.一個半徑為5cm的球形容器內裝有水,若水面所在圓的直徑為8cm,則容器內水的高度為_____cm.13.定義:如果一元二次方程ax2+bx+c=1(a≠1)滿足a+b+c=1.那么我們稱這個方程為“鳳凰”方程,已知ax2+bx+c=1(a≠1)是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結論:①a=c,②a=b,③b=c,④a=b=c,正確的是_____(填序號).14.如圖,已知點A,點C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.15.在一個不透明的口袋中裝有5個紅球和3個白球,他們除顏色外其他完全相同,任意摸出一個球是白球的概率為________.16.如圖,菱形ABCD的三個頂點在二次函數(shù)的圖象上,點A、B分別是該拋物線的頂點和拋物線與y軸的交點,則點D的坐標為____________.17.如圖,在中,,分別是,上的點,平分,交于點,交于點,若,且,則_______.18.如圖,在四邊形中,,,則的度數(shù)為______.三、解答題(共66分)19.(10分)如圖,點C在以AB為直徑的圓上,D在線段AB的延長線上,且CA=CD,BC=BD.(1)求證:CD與⊙O相切;(2)若AB=8,求圖中陰影部分的面積.20.(6分)綜合與實踐:操作與發(fā)現(xiàn):如圖,已知A,B兩點在直線CD的同一側,線段AE,BF均是直線CD的垂線段,且BF在AE的右邊,AE=2BF,將BF沿直線CD向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線CD相交于點P,點G是AE的中點,連接BG.探索與證明:求證:(1)四邊形EFBG是矩形;(2)△ABG∽△PBF.21.(6分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過上一點E作EG∥AC交CD的延長線于點G,連接AE交CD于點F,且EG=FG.(1)求證:EG是⊙O的切線;(2)延長AB交GE的延長線于點M,若AH=2,,求OM的長.22.(8分)如圖,點是二次函數(shù)圖像上的任意一點,點在軸上.(1)以點為圓心,長為半徑作.①直線經過點且與軸平行,判斷與直線的位置關系,并說明理由.②若與軸相切,求出點坐標;(2)、、是這條拋物線上的三點,若線段、、的長滿足,則稱是、的和諧點,記做.已知、的橫坐標分別是,,直接寫出的坐標_______.23.(8分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,(1)求購買A型和B型公交車每輛各需多少萬元?(2)預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?24.(8分)如圖,在中,,以斜邊上的中線為直徑作,分別與交于點.(1)過點作于點,求證:是的切線;(2)連接,若,求的長.25.(10分)在邊長為1個單位長度的正方形網格中建立如圖所示的平面直角坐標系。的頂點都在格點上,請解答下列問題:(1)作出關于原點對稱的;(2)寫出點、、的坐標。26.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)圖象交于A(-2,1),B(1,n)兩點.(1)求m,n的值;(2)當一次函數(shù)的值大于反比例函數(shù)的值時,請寫出自變量x的取值范圍.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】分別根據(jù)垂徑定理及圓周角定理對各選項進行分析即可.【詳解】解:∵DC是⊙O直徑,弦AB⊥CD于點F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正確;
∵點F不一定是OC的中點,
∴A錯誤.故選:A.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.2、B【分析】連接OD,利用勾股定理得到CD,利用垂線段最短得到當OC⊥AB時,OC最小,根據(jù)垂徑定理計算即可.【詳解】連接OD,如圖,設圓O的半徑為r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴當OC的值最小時,CD的值最大,而OC⊥AB時,OC最小,此時D、B重合,則由垂徑定理可得:CD=CB=AC=AB=1,∴CD的最大值為1.故答案為:1.【點睛】本題考查垂徑定理和勾股定理,作輔助線構造直角三角形應用勾股定理,并熟記垂徑定理內容是解題的關鍵.3、C【分析】連接.根據(jù)“HL”可證≌,利用全等三角形的對應邊相等,可得,據(jù)此判斷①;根據(jù)“”可證≌,可得,從而可得,據(jù)此判斷②;由(2)知,可證,據(jù)此判斷③;根據(jù)兩角分別相等的兩個三角形相似,可證∽∽,可得,從而可得,據(jù)此判斷④.【詳解】解:(1)連接.如圖所示:
∵四邊形ABCD是正方形,
∴∠ADC=90°,
∵FG⊥FC,
∴∠GFC=90°,
在Rt△CFG與Rt△CDG中,∴≌.∴...①正確.(2)由(1),垂直平分.∴∠EDC+∠2=90°,
∵∠1+∠EDC=90°,∴.∵四邊形ABCD是正方形,
∴AD=DC=AB,∠DAE=∠CDG=90°,∴≌.∴.∵為邊的中點,∴為邊的中點.∴.∴②錯誤.(3)由(2),得.∴.③正確.(4)由(3),可得∽∽.∴∴.∴④正確.故答案為:C.【點睛】本題考查正方形的性質、全等三角形的判定和性質、相似三角形的判定與性質、三角形中位線定理、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題.4、C【分析】連接BD得到∠ADB是直角,再利用兩三角形相似對應邊成比例即可求解.【詳解】連接BD,由AB是直徑得,∠ADB=.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故選C.5、B【解析】試題解析:由于圓心A在數(shù)軸上的坐標為3,圓的半徑為2,∴當d=r時,⊙A與數(shù)軸交于兩點:1、5,故當a=1、5時點B在⊙A上;當d<r即當1<a<5時,點B在⊙A內;當d>r即當a<1或a>5時,點B在⊙A外.由以上結論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.6、A【分析】移項后變成求二次函數(shù)y=-x2+2的最小值,再根據(jù)二次函數(shù)的圖像性質進行答題.【詳解】解:∵x2+y=2,∴y=-x2+2.∴該拋物線的開口方向向下,且其頂點坐標是(0,2).∵2≤x≤2,∴離對稱軸越遠的點所對應的函數(shù)值越小,∴當x=2時,y有最小值為-4+2=-2.故選:A.【點睛】本題考查了二次函數(shù)的最值.求二次函數(shù)的最值有常見的兩種方法,第一種是配方法,第二種是直接套用頂點的縱坐標求,熟練掌握二次函數(shù)的圖像及性質是解決本題的關鍵.7、A【分析】把x1代入方程ax2-2x-c=0得ax12-2x1=c,作差法比較可得.【詳解】解:∵x1是方程ax2-2x-c=0(a≠0)的一個根,
∴ax12-2x1-c=0,即ax12-2x1=c,
則p-q=(ax1-1)2-(ac+1.5)
=a2x12-2ax1+1-1.5-ac
=a(ax12-2x1)-ac-0.5
=ac-ac-0.5
=-0.5,
∵-0.5<0,
∴p-q<0,
∴p<q.
故選:A.【點睛】本題主要考查一元二次方程的解及作差法比較大小,熟練掌握能使方程成立的未知數(shù)的值叫做方程的解,利用比差法比較大小是解題的關鍵.8、A【分析】根據(jù)一次函數(shù)圖象的增減性判斷即可.【詳解】∵k=﹣3<0,∴y值隨x值的增大而減小,又∵x1<x1,∴y1>y1.故選:A.【點睛】本題考查一次函數(shù)圖象的增減性,關鍵在于先判斷k值再根據(jù)圖象的增減性判斷.9、A【解析】方差是刻畫波動大小的一個重要的數(shù)字.與平均數(shù)一樣,仍采用樣本的波動大小去估計總體的波動大小的方法,方差越小則波動越小,穩(wěn)定性也越好.【詳解】因為s=0.002<s=0.03,所以,甲比乙的產量穩(wěn)定.故選A【點睛】本題考核知識點:方差.解題關鍵點:理解方差意義.10、B【分析】由題意直接根據(jù)反比例函數(shù)的定義對下列選項進行判定即可.【詳解】解:根據(jù)反比例函數(shù)的定義可知是反比例函數(shù),,是一次函數(shù),,是二次函數(shù),都要排除.故選:B.【點睛】本題考查反比例函數(shù)的定義,注意掌握反比例函數(shù)解析式的一般形式,也可以轉化為的形式.二、填空題(每小題3分,共24分)11、4:9【分析】根據(jù)相似三角形面積的比等于相似比的平方列式計算即可.【詳解】解:因為兩個三角形相似,
∴較小三角形與較大三角形的面積比為()2=,故答案為:.【點睛】此題考查相似三角形的性質,掌握相似三角形面積的比等于相似比的平方是解題的關鍵.12、2或1【分析】分兩種情況:(1)容器內水的高度在球形容器的球心下面;(2)容器內水的高度在球形容器的球心上面;根據(jù)垂徑定理和勾股定理計算即可求解.【詳解】過O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,則OC3(cm).分兩種情況討論:(1)容器內水的高度在球形容器的球心下面時,如圖①,延長OC交⊙O于D,容器內水的高度為CD=OD﹣CO=5﹣3=2(cm);(2)容器內水的高度在球形容器的球心是上面時,如圖②,延長CO交⊙O于D,容器內水的高度為CD=OD+CO=5+3=1(cm).則容器內水的高度為2cm或1cm.故答案為:2或1.【點睛】本題考查了垂徑定理以及勾股定理,勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.注意分類思想的應用.13、①【分析】由方程有兩個相等的實數(shù)根,得到根的判別式等于1,再由a+b+c=1,把表示出b代入根的判別式中,變形后即可得到a=c.【詳解】解:∵方程有兩個相等實數(shù)根,且a+b+c=1,∴b2﹣4ac=1,b=﹣a﹣c,將b=﹣a﹣c代入得:a2+2ac+c2﹣4ac=(a﹣c)2=1,則a=c.故答案為:①.【點睛】此題考查了根的判別式,以及一元二次方程的解,一元二次方程中根的判別式大于1,方程有兩個不相等的實數(shù)根;根的判別式等于1,方程有兩個相等的實數(shù)根;根的判別式小于1,方程無解.14、1.【分析】作CE⊥x軸于E,如圖,利用平行線分線段成比例得到===,設D(m,n),則C(2m,2n),再根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=4mn,則A(m,4n),然后根據(jù)三角形面積公式用m、n表示S△AOD和S△BCD,從而得到它們的比.【詳解】作CE⊥x軸于E,如圖,∵DB∥CE,∴===,設D(m,n),則C(2m,2n),∵C(2m,2n)在反比例函數(shù)圖象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD與△BCD的面積比=mn:mn=1.故答案為1.【點睛】考核知識點:平行線分線段成比例,反比例函數(shù);數(shù)形結合,利用平行線分線段成比例,反比例函數(shù)定義求出點的坐標關系是關鍵.15、【詳解】解:∵在一個不透明的口袋中裝有5個紅球和3個白球,∴任意從口袋中摸出一個球來,P(摸到白球)==.16、(2,).【詳解】解:由題意可知:拋物線y=ax2-2ax+(a<0)的對稱軸是直線x=1,與y軸的交點坐標是(2,),即點B的坐標是(2,)由菱形ABCD的三個頂點在二次函數(shù)y=ax2-2ax+(a<0)的圖象上,點A,B分別是拋物線的頂點和拋物線與y軸的交點,∴點B與點D關于直線x=1對稱,得到點D的坐標為(2,).故答案為(2,).17、3:1【分析】根據(jù)題意利用相似三角形的性質即相似三角形的對應角平分線的比等于相似比即可解決問題.【詳解】解:∵∠DAE=∠CAB,∠AED=∠B,∴△ADE∽△ACB,∵GA,F(xiàn)A分別是△ADE,△ABC的角平分線,∴(相似三角形的對應角平分線的比等于相似比),AG:FG=3:2,∴AG:AF=3:1,∴DE:BC=3:1,故答為3:1.【點睛】本題考查相似三角形的判定和性質、解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型,難度一般.18、18°【分析】根據(jù)題意可知A、B、C、D四點共圓,由余角性質求出∠DBC的度數(shù),再由同弧所對的圓周角相等,即為所求.【詳解】解:∵在四邊形中,,∴A、B、C、D四點在同一個圓上,∵∠ABC=90°,,∴∠CBD=18°,∴∠CAD=∠CBD=18°故答案為:18°【點睛】本題考查的是四點共圓、互為余角的概念和同圓中同弧所對的圓周角相等.三、解答題(共66分)19、(1)見解析;(2)【分析】(1)連接OC,由圓周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性質得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,證出∠DCO=90°,則CD⊥OC,即可得出結論;
(2)證明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性質得出CD=OC=4,圖中陰影部分的面積=△OCD的面積-扇形OBC的面積,代入數(shù)據(jù)計算即可.【詳解】證明:連接OC,如圖所示:
∵AB是⊙O的直徑,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
∵CA=CD,BC=BD,
∴∠A=∠D=∠BCD,
又∵OA=OC,
∴∠ACO=∠A,
∴∠ACO=∠BCD,
∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,
∴CD⊥OC,
∵OC是⊙O的半徑,
∴CD與⊙O相切;
(2)解:∵AB=8,
∴OC=OB=4,
由(1)得:∠A=∠D=∠BCD,
∴∠OBC=∠BCD+∠D=2∠D,
∵∠BOC=2∠A,
∴∠BOC=∠OBC,
∴OC=BC,
∵OB=OC,
∴OB=OC=BC,
∴∠BOC=60°,
∵∠OCD=90°,
∴∠D=90°-60°=30°,
∴CD=OC=4,
∴圖中陰影部分的面積=△OCD的面積-扇形OBC的面積=×4×4-=8-π.【點睛】本題考查了切線的判定、圓周角定理、等腰三角形的判定與性質、等邊三角形的判定與性質、含30°角的直角三角形的性質、扇形面積公式、三角形面積公式等知識;熟練掌握切線的判定和圓周角定理是解題的關鍵.20、(1)見解析;(2)見解析.【分析】(1)先通過等量代換得出GE=BF,然后由AE⊥CD,BF⊥CD得出AE∥BF,從而得到四邊形EFBG是平行四邊形,最后利用BF⊥CD,則可證明平行四邊形EFBG是矩形;(2)先通過矩形的性質得出∠AGB=∠GBF=∠BFE=90°,然后通過等量代換得出∠ABG=∠PBF,再加上∠AGB=∠PFB=90°即可證明△ABG∽△PBF.【詳解】(1)證明:∵AE⊥CD,BF⊥CD,∴AE∥BF,∵AE=2BF,∴BF=AE,∵點G是AE的中點,∴GE=AE,∴GE=BF,又AE∥BF,∴四邊形EFBG是平行四邊形,∵BF⊥CD,∴平行四邊形EFBG是矩形;(2)∵四邊形EFBG是矩形,∴∠AGB=∠GBF=∠BFE=90°,∵∠ABP=90°,∴∠ABP﹣∠GBP=∠GBF﹣∠GBP,即∠ABG=∠PBF,∵∠ABG=∠PBF,∠AGB=∠PFB=90°,∴△ABG∽△PBF.【點睛】本題主要考查矩形的判定及性質,相似三角形的判定,掌握矩形的判定及性質和相似三角形的判定方法是解題的關鍵.21、(1)證明見解析;(2)【分析】(1)連接OE,如圖,通過證明∠GEA+∠OEA=90°得到OE⊥GE,然后根據(jù)切線的判定定理得到EG是⊙O的切線;(2)連接OC,如圖,設⊙O的半徑為r,則OC=r,OH=r-2,利用勾股定理得到,解得r=3,然后證明Rt△OEM∽Rt△CHA,再利用相似比計算OM的長.【詳解】(1)證明:連接OE,如圖,
∵GE=GF,∴∠GEF=∠GFE,而∠GFE=∠AFH,∴∠GEF=∠AFH,∵AB⊥CD,∴∠OAF+∠AFH=90°,∴∠GEA+∠OAF=90°,∵OA=OE,∴∠OEA=∠OAF,∴∠GEA+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切線;(2)解:連接OC,如圖,設⊙O的半徑為r,則OC=r,OH=r-2,在Rt△OCH中,,解得r=3,在Rt△ACH中,AC=,∵AC∥GE,∴∠M=∠CAH,∴Rt△OEM∽Rt△CHA,∴,即,解得:OM=.【點睛】本題考查了切線的判斷與性質:圓的切線垂直于經過切點的半徑.經過半徑的外端且垂直于這條半徑的直線是圓的切線.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑.也考查了勾股定理.22、(1)①與直線相切.理由見解析;②或;(2)或.【分析】(1)①作直線的垂線,利用兩點之間的距離公式及二次函數(shù)圖象上點的特征證明線段相等即可;②利用兩點之間的距離公式及二次函數(shù)圖象上點的特征構建方程即可求得答案.(2)利用兩點之間的距離公式分別求得各線段的長,根據(jù)“和諧點”的定義及二次函數(shù)圖象上點的特征構建方程即可求得答案.【詳解】(1)①與直線相切.如圖,過作直線,垂足為,設.則,,即:與直線相切.②當與軸相切時∴,,即:代入化簡得:或.解得:,.或.(2)已知、的橫坐標分別是,,代入二次函數(shù)的解析式得:,,設,∵點B的坐標為,∴,,,依題意得:,即,,即:,∴(不合題意,舍去)或,把,代入得:直接開平方解得:,,∴的坐標為:或【點睛】本題主要考查了兩點之間的距離公式二次函數(shù)的性質,利用兩點之間的距離公式及二次函數(shù)圖象上點的特征構建方程是解題的關鍵.23、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10﹣a)輛,由題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年適用型房地產勞動協(xié)議范例
- 2024商鋪局部改造施工協(xié)議樣本
- 2024年數(shù)據(jù)保護與信息安全保密協(xié)議
- 2024年合作投資資金安排協(xié)議
- 2024年項目顧問協(xié)議模板詳解
- 2024非金融機構借款協(xié)議示例
- 2024年商用中央空調購銷協(xié)議要約
- 2024年度工程設計協(xié)議格式
- 2024年定制門衛(wèi)勞務服務協(xié)議范本
- 2024年公司重組并購協(xié)議示例
- 資產 評估 質量保證措施
- 小學二年級上冊道德與法治-9這些是大家的-部編ppt課件
- 《礦山機械設備》復習題
- 冷庫工程特點施工難點分析及對策
- 中國古代樓閣PPT課件
- 排舞教案_圖文
- 簡單趨向補語:V上下進出回過起PPT課件
- 超聲檢測工藝卡
- 公司“師帶徒”實施方案
- 《內科護理學》病例分析(完整版)
- 5GQoS管理機制介紹
評論
0/150
提交評論