版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省泰興市濟川中學(xué)九上數(shù)學(xué)期末考試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.同學(xué)們喜歡足球嗎?足球一般是用黑白兩種顏色的皮塊縫制而成的,如圖所示,黑色皮塊是正五邊形,白色皮塊是正六邊形.若一個球上共有黑白皮塊32塊,請你計算一下,黑色皮塊和白色皮塊的塊數(shù)依次為()A.16塊,16塊 B.8塊,24塊C.20塊,12塊 D.12塊,20塊2.函數(shù)與在同一直角坐標(biāo)系中的大致圖象可能是()A. B.C. D.3.如圖,從點看一山坡上的電線桿,觀測點的仰角是45°,向前走到達點,測得頂端點和桿底端點的仰角分別是60°和30°,則該電線桿的高度()A. B. C. D.4.某射擊運動員在訓(xùn)練中射擊了10次,成績?nèi)鐖D所示:下列結(jié)論不正確的是()A.眾數(shù)是8 B.中位數(shù)是8 C.平均數(shù)是8.2 D.方差是1.25.如圖,AB是⊙O的直徑,弦CD⊥AB于點M,若CD=8cm,MB=2cm,則直徑AB的長為()A.9cm B.10cm C.11cm D.12cm6.如圖,△ABC中,AB=AC,∠ABC=70°,點O是△ABC的外心,則∠BOC的度數(shù)為()A.40° B.60° C.70° D.80°7.從這九個自然數(shù)中任取一個,是的倍數(shù)的概率是().A. B. C. D.8.如圖,點D是△ABC的邊BC上一點,∠BAD=∠C,AC=2AD,如果△ACD的面積為15,那么△ABD的面積為()A.15 B.10 C.7.5 D.59.拋物線的頂點坐標(biāo)是()A.(2,9) B.(2,-9)C.(-2,9) D.(-2,-9)10.如圖,A,B是反比例函數(shù)y=圖象上兩點,AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABCD=9,則k值為()A.8 B.10 C.12 D.1.二、填空題(每小題3分,共24分)11.一天晚上,小偉幫助媽媽清洗兩個只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機地搭配在一起,則顏色搭配正確的概率是_____.12.如圖,在半徑為的中,的長為,若隨意向圓內(nèi)投擲一個小球,小球落在陰影部分的概率為______________.13.古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),它有一定的規(guī)律性,若把第一個三角形數(shù)記為x1,第二個三角形數(shù)記為x2,…第n個三角形數(shù)記為xn,則xn+xn+1=.14.為了對1000件某品牌襯衣進行抽檢,統(tǒng)計合格襯衣的件數(shù),在相同條件下,經(jīng)過大量的重復(fù)抽檢,發(fā)現(xiàn)一件合格襯衣的頻率穩(wěn)定在常數(shù)0.98附近,由此可估計這1000件中不合格的襯衣約為__________件.15.如圖,A、B、C為⊙O上三點,且∠ACB=35°,則∠OAB的度數(shù)是______度.16.如果點把線段分割成和兩段(),其中是與的比例中項,那么的值為________.17.如圖,直線AB與⊙O相切于點C,點D是⊙O上的一點,且∠EDC=30°,則∠ECA的度數(shù)為_________.18.已知正六邊形的邊長為4cm,分別以它的三個不相鄰的頂點為圓心,邊長為半徑畫?。ㄈ鐖D),則所得到的三條弧的長度之和為cm.(結(jié)果保留π)三、解答題(共66分)19.(10分)自貢是“鹽之都,龍之鄉(xiāng),燈之城”,文化底蘊深厚.為弘揚鄉(xiāng)土特色文化,某校就同學(xué)們對“自貢歷史文化”的了解程度進行隨機抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖:⑴本次共調(diào)查名學(xué)生,條形統(tǒng)計圖中=;⑵若該校共有學(xué)生1200名,則該校約有名學(xué)生不了解“自貢歷史文化”;⑶調(diào)查結(jié)果中,該校九年級(2)班學(xué)生中了解程度為“很了解”的同學(xué)進行測試,發(fā)現(xiàn)其中共有四名同學(xué)相當(dāng)優(yōu)秀,它們是三名男生,一名女生,現(xiàn)準(zhǔn)備從這四名同學(xué)中隨機抽取兩人去市里參加“自貢歷史文化”知識競賽,用樹狀圖或列表法,求恰好抽取一男生一女生的概率.20.(6分)如圖,是一個銳角三角形,分別以、向外作等邊三角形、,連接、交于點,連接.(1)求證:(2)求證:21.(6分)已知關(guān)于的一元二次方程有兩個實數(shù)根,.(1)求的取值范圍:(2)當(dāng)時,求的值.22.(8分)(1)已知如圖1,在中,,,點在內(nèi)部,點在外部,滿足,且.求證:.(2)已知如圖2,在等邊內(nèi)有一點,滿足,,,求的度數(shù).23.(8分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若CD=9,tan∠ABE=,求⊙O的半徑.24.(8分)如圖,在等邊△ABC中,AB=6,AD是高.(1)尺規(guī)作圖:作△ABC的外接圓⊙O(保留作圖痕跡,不寫作法)(2)在(1)所作的圖中,求線段AD,BD與弧所圍成的封閉圖形的面積.25.(10分)某廠生產(chǎn)的甲、乙兩種產(chǎn)品,已知2件甲商品的出廠總價與3件乙商品的出廠總價相同,3件甲商品的出廠總價比2件乙商品的出廠總價多1500元.(1)求甲、乙商品的出廠單價分別是多少?(2)某銷售商計劃購進甲商品200件,購進乙商品的數(shù)量是甲的4倍.恰逢該廠正在對甲商品進行降價促銷活動,甲商品的出廠單價降低了,該銷售商購進甲的數(shù)量比原計劃增加了,乙的出廠單價沒有改變,該銷售商購進乙的數(shù)量比原計劃少了.結(jié)果該銷售商付出的總貨款與原計劃的總貨款恰好相同,求的值.26.(10分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點,與軸交于點.(1)求反比例函數(shù)的表達式及點坐標(biāo);(2)請直接寫出當(dāng)為何值時,;(3)求的面積.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】試題分析:根據(jù)題意可知:本題中的等量關(guān)系是“黑白皮塊32塊”和因為每塊白皮有3條邊與黑邊連在一起,所以黑皮只有3y塊,而黑皮共有邊數(shù)為5x塊,依此列方程組求解即可.解:設(shè)黑色皮塊和白色皮塊的塊數(shù)依次為x,y.則,解得,即黑色皮塊和白色皮塊的塊數(shù)依次為12塊、20塊.故選D.2、B【分析】分a>0與a<0兩種情況分類討論即可確定正確的選項.【詳解】解:當(dāng)a>o時,函數(shù)的圖象位于一、三象限,的開口向下,交y軸的負(fù)半軸,選項B符合;當(dāng)a<o時,函數(shù)的圖象位于二、四象限,的開口向上,交y軸的正半軸,沒有符合的選項.故答案為:B.【點睛】本題考查的知識點是反比例函數(shù)的圖象與二次函數(shù)的圖象,理解掌握函數(shù)圖象的性質(zhì)是解此題的關(guān)鍵.3、A【分析】延長PQ交直線AB于點E,設(shè)PE=x米,在直角△APE和直角△BPE中,根據(jù)三角函數(shù)利用x表示出AE和BE,根據(jù)AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函數(shù)求得QE的長,則PQ的長度即可求解.【詳解】解:延長PQ交直線AB于點E,設(shè)PE=x.
在直角△APE中,∠PAE=45°,
則AE=PE=x;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,,∵AB=AE-BE=6,則解得:∴在直角△BEQ中,故選:A【點睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題,解答本題的關(guān)鍵是明確題意,利用銳角三角函數(shù)和數(shù)形結(jié)合的思想解答.4、D【分析】首先根據(jù)圖形數(shù)出各環(huán)數(shù)出現(xiàn)的次數(shù),在進行計算眾數(shù)、中位數(shù)、平均數(shù)、方差.【詳解】根據(jù)圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數(shù)是8,中位數(shù)是8,平均數(shù)是方差是故選D【點睛】本題主要考查統(tǒng)計的基本知識,關(guān)鍵在于眾數(shù)、中位數(shù)、平均數(shù)和方差的概念.特別是方差的公式.5、B【分析】由CD⊥AB,可得DM=1.設(shè)半徑OD=Rcm,則可求得OM的長,連接OD,在直角三角形DMO中,由勾股定理可求得OD的長,繼而求得答案.【詳解】解:連接OD,設(shè)⊙O半徑OD為R,
∵AB是⊙O的直徑,弦CD⊥AB于點M,∴DM=CD=1cm,OM=R-2,在RT△OMD中,OD2=DM2+OM2即R2=12+(R-2)2,解得:R=5,∴直徑AB的長為:2×5=10cm.
故選B.【點睛】本題考查了垂徑定理以及勾股定理.注意掌握輔助線的作法及數(shù)形結(jié)合思想的應(yīng)用.6、D【分析】首先根據(jù)等腰三角形的性質(zhì)可得∠A的度數(shù),然后根據(jù)圓周角定理可得∠O=2∠A,進而可得答案.【詳解】解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°?70°×2=40°,
∵點O是△ABC的外心,
∴∠BOC=40°×2=80°,
故選:D.【點睛】此題主要考查了三角形的外接圓和外心,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧所對的圓周角等于圓心角的一半.7、B【解析】試題分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,∵1~9這九個自然數(shù)中,是偶數(shù)的數(shù)有:2、4、6、8,共4個,∴從1~9這九個自然數(shù)中任取一個,是偶數(shù)的概率是:.故選B.8、D【分析】首先證明△BAD∽△BCA,由相似三角形的性質(zhì)可得:△BAD的面積:△BCA的面積為1:4,得出△BAD的面積:△ACD的面積=1:3,即可求出△ABD的面積.【詳解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴,∴,∵△ACD的面積為15,∴△ABD的面積=×15=5,故選:D.【點睛】本題主要考查了相似三角形的判定與性質(zhì),掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.9、A【分析】把拋物線解析式化為頂點式即可求得答案.【詳解】∵,∴頂點坐標(biāo)為(2,9).故選:A.【點睛】本題主要考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解答此題的關(guān)鍵,即在中,對稱軸為x=h,頂點坐標(biāo)為(h,k).10、B【分析】分別延長CA、DB,它們相交于E,如圖,設(shè)AC=t,則BD=t,OC=5t,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征得到k=OD?t=t?5t,則OD=5t,所以B點坐標(biāo)為(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四邊形ABCD=S△ECD﹣S△EAB得到?5t?5t﹣?4t?4t=9,解得t2=2,然后根據(jù)k=t?5t進行計算.【詳解】解:分別延長CA、DB,它們相交于E,如圖,設(shè)AC=t,則BD=t,OC=5t,∵A,B是反比例函數(shù)y=圖象上兩點,∴k=OD?t=t?5t,∴OD=5t,∴B點坐標(biāo)為(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四邊形ABCD=S△ECD﹣S△EAB,∴?5t?5t﹣?4t?4t=9,∴t2=2,∴k=t?5t=5t2=5×2=2.故選:B.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.二、填空題(每小題3分,共24分)11、【解析】分析:根據(jù)概率的計算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯誤的可能,進而求出各自的概率即可.詳解:用A和a分別表示第一個有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個有蓋茶杯的杯蓋和茶杯、經(jīng)過搭配所能產(chǎn)生的結(jié)果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.12、【分析】根據(jù)圓的面積公式和扇形的面積公式分別求得各自的面積,再根據(jù)概率公式即可得出答案.【詳解】∵圓的面積是:,扇形的面積是:,∴小球落在陰影部分的概率為:.故答案為:.【點睛】本題主要考查了幾何概率問題,用到的知識點為:概率=相應(yīng)面積與總面積之比.13、.【分析】根據(jù)三角形數(shù)得到x1=1,x1=3=1+1,x3=6=1+1+3,x4=10=1+1+3+4,x5=15=1+1+3+4+5,即三角形數(shù)為從1到它的順號數(shù)之間所有整數(shù)的和,即xn=1+1+3+…+n=、xn+1=,然后計算xn+xn+1可得.【詳解】∵x1=1,
x1═3=1+1,
x3=6=1+1+3,
x4═10=1+1+3+4,
x5═15=1+1+3+4+5,
…
∴xn=1+1+3+…+n=,xn+1=,
則xn+xn+1=+=(n+1)1,
故答案為:(n+1)1.14、1【分析】用總件數(shù)乘以不合格襯衣的頻率即可得出答案.【詳解】這1000件中不合格的襯衣約為:(件);
故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.15、1【分析】根據(jù)題意易得∠AOB=70°,然后由等腰三角形的性質(zhì)及三角形內(nèi)角和可求解.【詳解】解:∵OA=OB,∴∠OAB=∠OBA,∵∠ACB=35°,∴∠AOB=2∠ACB=70°,∴;故答案為1.【點睛】本題主要考查圓周角定理,熟練掌握圓周角定理是解題的關(guān)鍵.16、【分析】根據(jù)黃金分割的概念和黃金比是解答即可.【詳解】∵點把線段分割成和兩段(),其中是與的比例中項,∴點P是線段AB的黃金分割點,∴=,故填.【點睛】此題考察黃金分割,是與的比例中項即點P是線段AB的黃金分割點,即可得到=.17、30°【分析】連接OE、OC,根據(jù)圓周角定理求出∠EOC=60°,從而證得為等邊三角形,再根據(jù)切線及等邊三角形的性質(zhì)即可求出答案.【詳解】解:如圖所示,連接OE、OC,∵∠EDC=30°,∴∠EOC=2∠EDC=60°,又∵OE=OC,∴為等邊三角形,∴∠ECO=60°,∵直線AB與圓O相切于點C,∴∠ACO=90°,∴∠ECA=∠ACO-∠ECO=90°-60°=30°.故答案為:30°.【點睛】本題考查了圓的基本性質(zhì)、圓周角定理及切線的性質(zhì),等邊三角形的判定與性質(zhì),熟練掌握各性質(zhì)判定定理是解題的關(guān)鍵.18、8π【解析】試題分析:先求得正多邊形的每一個內(nèi)角,然后由弧長計算公式.解:方法一:先求出正六邊形的每一個內(nèi)角==120°,所得到的三條弧的長度之和=3×=8π(cm);方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內(nèi)角120°,每條弧的度數(shù)為120°,三條弧可拼成一整圓,其三條弧的長度之和為8πcm.故答案為8π.考點:弧長的計算;正多邊形和圓.三、解答題(共66分)19、(1)60,18;⑵240;⑶.【分析】(1)根據(jù)了解很少的有24人,占40%,即可求得總?cè)藬?shù);利用調(diào)查的總?cè)藬?shù)減去其它各項的人數(shù)即可求得m的值;(2)利用1200乘以不了解“自貢歷史文化”的人所占的比例即可求解;(3)列出表格即可求出恰好抽中一男生一女生的概率.【詳解】⑴.∵,故分別應(yīng)填:60,18.⑵.在樣本中“不了解”的占:,所以;故應(yīng)填:240.⑶.列表如下(也可以選擇“樹狀圖”,注意是“不放回”)由上表可知:共有12種可能,其“一男一女”的可能性有6種.∴(一男一女)=【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及求隨機事件的概率,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)見解析;(2)見解析【分析】(1)過A作AM⊥CD于M,AN⊥BE于N,設(shè)AB與CD相交于點G.根據(jù)等邊三角形的性質(zhì)得到AD=AB,AC=AE,∠BAD=∠CAE=60°,根據(jù)全等三角形的判定定理即可得△ACD≌△AEB,根據(jù)全等三角形的性質(zhì)可得AM=AN,根據(jù)角平分線的判定定理即可得到∠DFA=∠AFE,再根據(jù)全等三角形的對應(yīng)角相等和三角形內(nèi)角和等于180°得到∠DFB=∠DAG=60°,即可得到結(jié)論;(2)如圖,延長FB至K,使FK=DF,連DK,根據(jù)等邊三角形的性質(zhì)和全等三角形的判定和性質(zhì)定理即可得到結(jié)論.【詳解】(1)過A作AM⊥CD于M,AN⊥BE于N,設(shè)AB與CD相交于點G.∵△ABD和△ACE為等邊三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB,∴CD=BE,∠ADG=∠ABF,△ADC的面積=△ABE的面積,∴CD?AM=BE?AN,∴AM=AN,∴AF是∠DFE的平分線,∴∠DFA=∠AFE.∵∠ADG=∠ABF,∠AGD=∠BGF,∴∠DFB=∠DAG=60°,∴∠GFE=120°,∴∠BFD=∠DFA=∠AFE.(2)如圖,延長FB至K,使FK=DF,連接DK.∵∠DFB=60°,∴△DFK為等邊三角形,∴DK=DF,∠KDF=∠K=60°,∴∠K=∠DFA=60°.∵∠ADB=60°,∴∠KDB=∠FDA.在△DBK和△DAF中,∵∠K=∠DFA,DK=DF,∠KDB=∠FDA,∴△DBK≌△DAF,∴BK=AF.∵DF=DK=FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的判定與性質(zhì),角平分線的判定,正確的作出輔助線是解題的關(guān)鍵.21、(1);(2)【分析】(1)由條件可知該方程的判別式大于或等于0,可得到關(guān)于m的不等式,可求得m的取值范圍;
(2)利用根與系數(shù)的關(guān)系可用m表示出已知等式,可求得m的值.【詳解】解:(1)原方程有兩個實數(shù)根,整理,得:解得:(2),,即解得:又的值為.【點睛】本題考查了根據(jù)一元二次方程的根與判別式的關(guān)系來確定未知系數(shù)的取值范圍,以及根據(jù)根與系數(shù)的關(guān)系來確定未知系數(shù)的值.22、(1)詳見解析;(2)150°【分析】(1)先證∠ABD=∠CBE,根據(jù)SAS可證△ABD≌△CBE;(2)把線段PC以點C為中心順時針旋轉(zhuǎn)60°到線段CQ處,連結(jié)AQ.根據(jù)旋轉(zhuǎn)性質(zhì)得△PCQ是等邊三角形,根據(jù)等邊三角形性質(zhì)證△BCP≌△ACQ(SAS),得BP=AQ=4,∠BPC=∠AQC,根據(jù)勾股定理逆定理可得∠AQP=90°,進一步推出∠BPC=∠AQC=∠AQP+∠PQC=90°+60°.【詳解】(1)證明:∵∠ABC=90°,BD⊥BE∴∠ABC=∠DBE=90°即∠ABD+∠DBC=∠DBC+∠CBE∴∠ABD=∠CBE.又∵AB=CB,BD=BE∴△ABD≌△CBE(SAS).(2)如圖,把線段PC以點C為中心順時針旋轉(zhuǎn)60°到線段CQ處,連結(jié)AQ.由旋轉(zhuǎn)知識可得:∠PCQ=60°,CP=CQ=1,∴△PCQ是等邊三角形,∴CP=CQ=PQ=1.又∵△ABC是等邊三角形,∴∠ACB=60°=∠PCQ,BC=AC,∴∠BCP+∠PCA=∠PCA+∠ACQ,即∠BCP=∠ACQ.在△BCP與△ACQ中∴△BCP≌△ACQ(SAS)∴BP=AQ=4,∠BPC=∠AQC.又∵PA=5,∴.∴∠AQP=90°又∵△PCQ是等邊三角形,∴∠PQC=60°∴∠BPC=∠AQC=∠AQP+∠PQC=90°+60°=150°∴∠BPC=150°.【點睛】考核知識點:等邊三角形,全等三角形,旋轉(zhuǎn),勾股定理.根據(jù)旋轉(zhuǎn)性質(zhì)和全等三角形判定和性質(zhì)求出邊和角的關(guān)系是關(guān)鍵.23、(1)見解析;(2)【分析】(1)連接,證明,可得,則;(2)證明,,則,可求出,則答案可求出.【詳解】解:(1)證明:連接OB,∵BE為⊙O的切線,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直徑,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四邊形ABCD的外接圓為⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴設(shè)AB=x,則BD=2x,AD==x,∵∠E=∠E,∠ABE=∠BDE,∴△AEB∽△BED,∴BE2=AE?DE,且==,設(shè)AE=a,則BE=2a,∴4a2=a(a+x),∴a=x,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴=,解得=3,∴AD=x=15,∴OA=.【點睛】本題考查切線的性質(zhì)、解直角三角形、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線解決問題.24、(1)見解析;(2)【分析】(1)作BH⊥AC交AD于O,以O(shè)為圓心,OB為半
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股市投資技巧與案例
- 裝配式構(gòu)件智能追蹤定位- 顏子 17課件講解
- 四川電子機械職業(yè)技術(shù)學(xué)院《跨境電子商務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川電影電視學(xué)院《生物化工原理與設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川電力職業(yè)技術(shù)學(xué)院《P高階交換原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川大學(xué)錦江學(xué)院《大數(shù)據(jù)與數(shù)據(jù)挖掘技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- AI技術(shù)對行業(yè)發(fā)展的影響分析會報告金融、醫(yī)療、教育匯報
- 高校勞動教育課程優(yōu)化研究
- 傳染病防控策略與效果評估報告
- 門市合伙合同范例
- 陜西西安未央?yún)^(qū)2021-2022學(xué)年度第一學(xué)期期末質(zhì)量檢測五年級英語試卷(人教PEP版含答案)
- 大疆開 FCC BOOST 教程指南
- C++面向?qū)ο蟪绦蛟O(shè)計(第二版)課件整套電子教案
- YY/T 0506.3-2005病人、醫(yī)護人員和器械用手術(shù)單、手術(shù)衣和潔凈服 第3部分:試驗方法
- 人力資源四級培訓(xùn)職業(yè)道德培訓(xùn)課件
- 醫(yī)院行風(fēng)建設(shè)及行風(fēng)示范窗口建設(shè)工作計劃
- 內(nèi)部控制制度審計實施細(xì)則
- 加油站隱患排查表、整改臺賬
- 浙江溫州文成縣周壤鎮(zhèn)招考聘用大學(xué)生村務(wù)助理【共500題附答案解析】模擬檢測試卷0
- 私人財富管理與資產(chǎn)配置課件
- 廣東汕頭高二地理(文科班)期中試卷
評論
0/150
提交評論