版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濰坊市諸城龍源學校2025屆數(shù)學九上期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,、、、是上的四點,,,則的度數(shù)是()A. B. C. D.2.正六邊形的周長為6,則它的面積為()A. B. C. D.3.如圖,將n個邊長都為2的正方形按如圖所示擺放,點A1、A2、A3,…,An分別是正方形的中心,則這n個正方形重疊的面積之和是()A.n B.n-1C.4n D.4(n-1)4.下列圖形中是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個5.下列命題錯誤的是()A.對角線互相垂直平分的四邊形是菱形B.一組對邊平行,一組對角相等的四邊形是平行四邊形C.矩形的對角線相等D.對角線相等的四邊形是矩形6.拋物線,下列說法正確的是()A.開口向下,頂點坐標 B.開口向上,頂點坐標C.開口向下,頂點坐標 D.開口向上,頂點坐標7.對于實數(shù),定義運算“*”;關于的方程恰好有三個不相等的實數(shù)根,則的取值范圍是()A. B.C. D.8.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.49.已知的半徑為,點到圓心的距離為,則點和的位置關系是()A.點在圓內 B.點在圓上 C.點在圓外 D.不能確定10.在下列圖形中,是中心對稱圖形的是()A. B.C. D.二、填空題(每小題3分,共24分)11.用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,首先應假設P在__________.12.從0,1,2,3,4中任取兩個不同的數(shù),其乘積為0的概率是___________.13.如圖,在平行四邊形ABCD中,添加一個條件________使平行四邊形ABCD是矩形.14.如圖,在菱形ABCD中,邊長為1,∠A=60?,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,…,則四邊形A2019B2019C2019D2019的面積是_____.15.菱形ABCD的周長為20,且有一個內角為120°,則它的較短的對角線長為______.16.如圖,△ABC內接于⊙O,∠ACB=35o,則∠OAB=o.17.用一個圓心角90°,半徑為8㎝的扇形紙圍成一個圓錐,則該圓錐底面圓的半徑為.18.如圖,半徑為,正方形內接于,點在上運動,連接,作,垂足為,連接.則長的最小值為________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點.(1)分別求這兩個函數(shù)的表達式;(2)將直線向上平移個單位長度后與軸交于,與反比例函數(shù)圖象在第一象限內的交點為,連接,,求點的坐標及的面積.20.(6分)(1)如圖①,AB為⊙O的直徑,點P在⊙O上,過點P作PQ⊥AB,垂足為點Q.說明△APQ∽△ABP;(2)如圖②,⊙O的半徑為7,點P在⊙O上,點Q在⊙O內,且PQ=4,過點Q作PQ的垂線交⊙O于點A、B.設PA=x,PB=y(tǒng),求y與x的函數(shù)表達式.21.(6分)已知二次函數(shù)y=-x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(2,3),(3,0).(1)則b=,c=;(2)該二次函數(shù)圖象與y軸的交點坐標為,頂點坐標為;(3)在所給坐標系中畫出該二次函數(shù)的圖象;(4)根據(jù)圖象,當-3<x<2時,y的取值范圍是.22.(8分)在平面直角坐標系xOy中,拋物線().(1)寫出拋物線頂點的縱坐標(用含a的代數(shù)式表示);(2)若該拋物線與x軸的兩個交點分別為點A和點B,且點A在點B的左側,AB=1.①求a的值;②記二次函數(shù)圖象在點
A,B之間的部分為W(含
點A和點B),若直線
()經(jīng)過(1,-1),且與
圖形W
有公共點,結合函數(shù)圖象,求
b
的取值范圍.23.(8分)如圖,已知AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.(1)求證:AB=AC;(2)求證:DE是⊙O的切線;(3)若⊙O的半徑為6,∠BAC=60°,則DE=________.24.(8分)對于平面直角坐標系中,已知點A(-2,0)和點B(3,0),線段AB和線段AB外的一點P,給出如下定義:若45°≤∠APB≤90°時,則稱點P為線段AB的可視點,且當PA=PB時,稱點P為線段AB的正可視點.圖1備用圖(1)①如圖1,在點P1(3,6),P2(-2,-5),P3(2,2)中,線段AB的可視點是;②若點P在y軸正半軸上,寫出一個滿足條件的點P的坐標:__________.(2)在直線y=x+b上存在線段AB的可視點,求b的取值范圍;(3)在直線y=-x+m上存在線段AB的正可視點,直接寫出m的取值范圍.25.(10分)如圖,中,點在邊上,,將線段繞點旋轉到的位置,使得,連接,與交于點(1)求證:;(2)若,,求的度數(shù).26.(10分)用配方法把二次函數(shù)y=﹣2x2+6x+4化為y=a(x+m)2+k的形式,再指出該函數(shù)圖象的開口方向、對稱軸和頂點坐標.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)垂徑定理得,結合和圓周角定理,即可得到答案.【詳解】∵,∴,∵,∴.故選:A.【點睛】本題主要考查垂徑定理和圓周角定理,掌握垂徑定理和圓周角定理是解題的關鍵.2、B【分析】首先根據(jù)題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為6,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等邊三角形,∵正六邊形ABCDEF的周長為6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM=,∴S△OBC=×BC×OM=,∴該六邊形的面積為:.故選:B.【點睛】此題考查了圓的內接六邊形的性質與等邊三角形的判定與性質.此題難度不大,注意掌握數(shù)形結合思想的應用.3、B【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:如圖示,由分別過點A1、A2、A3,垂直于兩邊的垂線,由圖形的割補可知:一個陰影部分面積等于正方形面積的,即陰影部分的面積是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故選:B.【點睛】此題考查了正方形的性質,解決本題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.4、B【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,進行判斷.【詳解】從左起第2、4個圖形是中心對稱圖形,故選B.【點睛】本題考查了中心對稱圖形的概念,注意掌握圖形繞某一點旋轉180°后能夠與自身重合.5、D【分析】根據(jù)矩形、菱形、平行四邊形的知識可判斷出各選項,從而得出答案.【詳解】A、對角線互相垂直平分的四邊形是菱形,命題正確,不符合題意;B、一組對邊平行,一組對角相等的四邊形是平行四邊形,命題正確,不符合題意;C、矩形的對角線相等,命題正確,不符合題意;D、對角線相等的四邊形不一定是矩形,例如等腰梯形,故本選項符合題意.故選:D.【點睛】本題主要考查了命題與定理的知識,解答本題的關鍵是熟練掌握平行四邊形、菱形以及矩形的性質,此題難度不大.6、C【分析】直接根據(jù)頂點式即可得出頂點坐標,根據(jù)a的正負即可判斷開口方向.【詳解】∵,∴拋物線開口向下,由頂點式的表達式可知拋物線的頂點坐標為,∴拋物線開口向下,頂點坐標故選:C.【點睛】本題主要考查頂點式的拋物線的表達式,掌握a對開口方向的影響和頂點坐標的確定方法是解題的關鍵.7、C【分析】設,根據(jù)定義得到函數(shù)解析式,由方程的有三個不同的解去掉函數(shù)圖象與直線y=t的交點有三個,即可確定t的取值范圍.【詳解】設,由定義得到,∵方程恰好有三個不相等的實數(shù)根,∴函數(shù)的圖象與直線y=t有三個不同的交點,∵的最大值是∴若方程恰好有三個不相等的實數(shù)根,則t的取值范圍是,故選:C.【點睛】此題考查新定義的公式,拋物線與直線的交點與方程的解的關系,正確理解拋物線與直線的交點與方程的解的關系是解題的關鍵.8、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.9、B【解析】根據(jù)點與圓的位置關系進行判斷.【詳解】∵⊙O的半徑為6cm,P到圓心O的距離為6cm,
即OP=6,
∴點P在⊙O上.
故選:B.【點睛】本題考查了點與圓的位置關系:點與圓的位置關系有3種,設⊙O的半徑為r,點P到圓心的距離OP=d,則有:點P在圓外?d>r;點P在圓上?d=r;點P在圓內?d<r.10、C【分析】把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.據(jù)此判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、是中心對稱圖形,故此選項正確;D、不是中心對稱圖形,故此選項錯誤;故選:C.【點睛】本題考查的是中心對稱圖形的概念:中心對稱圖形關鍵是尋找對稱中心,旋轉180度后與原圖重合.二、填空題(每小題3分,共24分)11、⊙O上或⊙O內【分析】直接利用反證法的基本步驟得出答案.【詳解】解:用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,
首先應假設:若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O上或⊙O內.
故答案為:在⊙O上或⊙O內.【點睛】此題主要考查了反證法,正確掌握反證法的解題方法是解題關鍵.12、【分析】首先根據(jù)題意畫出表格,然后由表格求得所有等可能的結果與其乘積等于0的情況,再利用概率公式即可求得答案;【詳解】解:畫表格得:共由20種等可能性結果,其中乘積為0有8種,故乘積為0的概率為,故答案為:.【點睛】本題主要考查了列表法與樹狀圖法,掌握列表法與樹狀圖法是解題的關鍵.13、AC=BD或∠ABC=90°【分析】根據(jù)矩形的判定方法即可解決問題;【詳解】若使平行四邊形ABCD變?yōu)榫匦?,可添加的條件是:
AC=BD(對角線相等的平行四邊形是矩形);∠ABC=90°(有一個角是直角的平行四邊形是矩形)等,任意寫出一個正確答案即可,如:AC=BD或∠ABC=90°.
故答案為:AC=BD或∠ABC=90°【點睛】本題主要考查了平行四邊形的性質與矩形的判定,熟練掌握矩形是特殊的平行四邊形是解題關鍵.14、【分析】連接AC、BD,根據(jù)菱形的面積公式,得S菱形ABCD=,進而得矩形A1B1C1D1的面積,菱形A2B2C2D2的面積,以此類推,即可得到答案.【詳解】連接AC、BD,則AC⊥BD,∵菱形ABCD中,邊長為1,∠A=60°,∴S菱形ABCD=AC?BD=1×1×sin60°=,∵順次連結菱形ABCD各邊中點,可得四邊形A1B1C1D1,∴四邊形A1B1C1D1是矩形,∴矩形A1B1C1D1的面積=AC?BD=AC?BD=S菱形ABCD==,菱形A2B2C2D2的面積=×矩形A1B1C1D1的面積=S菱形ABCD==,……,∴四邊形A2019B2019C2019D2019的面積=,故答案為:.【點睛】本題主要考查菱形得性質和矩形的性質,掌握菱形的面積公式,是解題的關鍵.15、1【分析】根據(jù)菱形的性質可得菱形的邊長為1,然后根據(jù)內角度數(shù)進而求出較短對角線的長.【詳解】如圖所示:菱形ABCD的周長為20,AB=20÷4=1,又,四邊形ABCD是菱形,,AB=AD,是等邊三角形,BD=AB=1.故答案為1.【點睛】本題主要考查菱形的性質及等邊三角形,關鍵是熟練掌握菱形的性質.16、55【解析】分析:∵∠ACB與∠AOB是所對的圓周角和圓心角,∠ACB=35o,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.17、1.【解析】試題分析:扇形的弧長是:,設底面半徑是,則,解得.故答案是:1.考點:圓錐的計算.18、【分析】先求得正方形的邊長,取AB的中點G,連接GF,CG,當點C、F、G在同一直線上時,根據(jù)兩點之間線段最短,則CF有最小值,此時即可求得這個值.【詳解】如圖,連接OA、OD,取AB的中點G,連接GF,CG,∵ABCD是圓內接正方形,,∴,∴,∵AF⊥BE,∴,∴,,當點C、F、G在同一直線上時,CF有最小值,如下圖:最小值是:,故答案為:【點睛】本題主要考查了正方形的性質,勾股定理,直角三角形斜邊上的中線的性質,根據(jù)兩點之間線段最短確定CF的最小值是解決本題的關鍵.三、解答題(共66分)19、(1);;(2)【分析】(1)將A點的坐標分別代入正比例函數(shù)與反比例函數(shù)的解析式即可求得答案;(2)利用直線平移的規(guī)律得到直線BC的解析式,再解方程組可求得點C的坐標,利用進行計算可求得結論.【詳解】解:(1)把代入得,解得;把代入得,正比例函數(shù)的解析式為;反比例函數(shù)的解析式為;(2)直線向上平移的單位得到直線的解析式為,當時,,則,解方程組得或,∵點在第一象限內,點的坐標為;連接,.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,只要把這兩個函數(shù)的關系式聯(lián)立成方程組求解即可.20、(1)見解析;(2)【分析】(1)根據(jù)圓周角定理可證∠APB=90°,再根據(jù)相似三角形的判定方法:兩角對應相等,兩個三角形相似即可求證結論;(2)連接PO,并延長PO交⊙O于點C,連接AC,根據(jù)圓周角定理可得∠PAC=90°,∠C=∠B,求得∠PAC=∠PQB,根據(jù)相似三角形的性質即可得到結論.【詳解】(1)如圖①所示:∵AB為⊙O的直徑∴∠APB=90°又∵PQ⊥AB∴∠AQP=90°∴∠AQP=∠APB又∵∠PAQ=∠BAP∴△APQ∽△ABP.(2)如圖②,連接PO,并延長PO交⊙O于點C,連接AC.∵PC為⊙O的直徑∴∠PAC=90°又∵PQ⊥AB∴∠PQB=90°∴∠PAC=∠PQB又∵∠C=∠B(同弧所對的圓周角相等)∴△PAC∽△PQB∴又∵⊙O的半徑為7,即PC=14,且PQ=4,PA=x,PB=y(tǒng)∴∴.【點睛】本題考查相似三角形的判定及其性質,圓周角定理及其推論,解題的關鍵是綜合運用所學知識.21、(1)b=2,c=3;(2)(0,3),(1,4)(3)見解析;(4)-12<y≤4【解析】(1)將點(2,3),(3,0)的坐標直接代入y=-x2+bx+c即可;(2)由(1)可得解析式,將二次函數(shù)的解析式華為頂點式即可;(3)根據(jù)二次函數(shù)的定點、對稱軸及所過的點畫出圖象即可;(4)直接由圖象可得出y的取值范圍.【詳解】(1)解:把點(2,3),(3,0)的坐標直接代入y=-x2+bx+c得,解得,故答案為:b=2,c=3;(2)解:令x=0,c=3,二次函數(shù)圖像與y軸的交點坐標為則(0,3),二次函數(shù)解析式為y=y=-x2+2x+3=-(x-1)2+4,則頂點坐標為(1,4).(3)解:如圖所示…(4)解:根據(jù)圖像,當-3<x<2時,y的取值范圍是:-12<y≤4.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.也考查了二次函數(shù)的圖象與性質.22、(1)1a+8;(2)①a=-1;②或或【分析】(1)將原表達式變?yōu)轫旤c式,即可得到答案;(2)①根據(jù)頂點式可得拋物線的對稱軸是x=1,再根據(jù)已知條件得到A、B兩點的坐標,將坐標代入,即可得到a的值;②分情況討論,當
()經(jīng)過(1,-1)和A(-1,0)時,以及當
()經(jīng)過(1,-1)和B(3,0)時,代入解析式即可求出答案.【詳解】(1)==所以頂點坐標為(1,1a+8),則縱坐標為1a+8.(2)①解:∵原解析式變形為:y=∴拋物線的對稱軸是x=1又∵拋物線與x軸的兩個交點分別為點A和點B,AB=1∴點A和點B各距離對稱軸2個單位∵點A在點B的左側∴A(-1,0),B(3,0)∴將B(3,0)代入∴9a-6a+5a+8=0a=-1②當
()經(jīng)過(1,-1)和A(-1,0)時,當
()經(jīng)過(1,-1)和B(3,0)時,∴或或【點睛】本題考查了二次函數(shù)、一次函數(shù)的綜合性題目,數(shù)形結合是解答此題的關鍵.23、(1)見解析;(2)見解析;(3).【分析】(1)連接AD,由直徑所對的圓周角度數(shù)及中點可證AD是BC的垂直平分線,根據(jù)線段垂直平分線的性質可得結論;(2)連接OD,由中位線的性質可得OD∥AC,由平行的性質與切線的判定可證;(3)易知是等邊三角形,由等邊三角形的性質可得CB長及度數(shù),利用直角三角形30度角的性質及勾股定理可得結果.【詳解】(1)連接AD.∵AB是⊙O的直徑,∴∠ADB=90°.又∵DC=BD,AD是BC的垂直平分線∴AB=AC.(2)連接
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政總廚個人述職報告
- 糖尿病護理方案
- 3.3.1鹽類的水解酸堿性高二上學期化學人教版(2019)選擇性必修1
- 足跟痛的診斷與治療
- 保護牙齒小班安全教案反思
- 荷塘月色說課稿
- 安踏企業(yè)五年戰(zhàn)略規(guī)劃
- 生物物理學實驗室安全操作
- 機場租賃合同
- 健身中心土地租賃協(xié)議
- GB/T 42455.2-2024智慧城市建筑及居住區(qū)第2部分:智慧社區(qū)評價
- 2024年認證行業(yè)法律法規(guī)及認證基礎知識
- 2024廣西專業(yè)技術人員繼續(xù)教育公需科目參考答案(97分)
- YYT 0653-2017 血液分析儀行業(yè)標準
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- 刑事受害人授權委托書范本
- 傳染病轉診單
- 手術室各級護士崗位任職資格及職責
- 小兒常見眼病的診治與預防PPT參考課件
- 班組建設實施細則
- 畢業(yè)設計(論文)汽車照明系統(tǒng)常見故障診斷與排除
評論
0/150
提交評論