春季高考數(shù)學知識點_第1頁
春季高考數(shù)學知識點_第2頁
春季高考數(shù)學知識點_第3頁
春季高考數(shù)學知識點_第4頁
春季高考數(shù)學知識點_第5頁
已閱讀5頁,還剩75頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

〖1.1〗集合【1.1.1】集合的含義與表示(1)集合的概念集合中的元素具有確定性、互異性和無序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實數(shù)集.(3)集合與元素間的關系對象與集合的關系是,或者,兩者必居其一.(4)集合的表示法①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合.(5)集合的分類①含有有限個元素的集合叫做有限集.②含有無限個元素的集合叫做無限集.③不含有任何元素的集合叫做空集().【1.1.2】集合間的基本關系(6)子集、真子集、集合相等名稱記號意義性質(zhì)示意圖子集(或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則(4)若且,則或真子集AB(或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA(7)已知集合有個元素,則它有個子集,它有個真子集,它有個非空子集,它有非空真子集.【1.1.3】集合的基本運算(8)交集、并集、補集名稱記號意義性質(zhì)示意圖交集且(1)(2)(3)并集或(1)(2)(3)補集12【補充知識】含絕對值的不等式與一元二次不等式的解法(1)含絕對值的不等式的解法不等式解集或把看成一個整體,化成,型不等式來求解(2)一元二次不等式的解法判別式二次函數(shù)的圖象一元二次方程的根(其中無實根的解集或的解集〖1.2〗函數(shù)及其表示【1.2.1】函數(shù)的概念(1)函數(shù)的概念①設、是兩個非空的數(shù)集,如果按照某種對應法則,對于集合中任何一個數(shù),在集合中都有唯一確定的數(shù)和它對應,那么這樣的對應(包括集合,以及到的對應法則)叫做集合到的一個函數(shù),記作.②函數(shù)的三要素:定義域、值域和對應法則.③只有定義域相同,且對應法則也相同的兩個函數(shù)才是同一函數(shù).(2)區(qū)間的概念及表示法①設是兩個實數(shù),且,滿足的實數(shù)的集合叫做閉區(qū)間,記做;滿足的實數(shù)的集合叫做開區(qū)間,記做;滿足,或的實數(shù)的集合叫做半開半閉區(qū)間,分別記做,;滿足的實數(shù)的集合分別記做.注意:對于集合與區(qū)間,前者可以大于或等于,而后者必須,(前者可以不成立,為空集;而后者必須成立).(3)求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù).②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù).③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合.④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1.⑤中,.⑥零(負)指數(shù)冪的底數(shù)不能為零.⑦若是由有限個基本初等函數(shù)的四則運算而合成的函數(shù)時,則其定義域一般是各基本初等函數(shù)的定義域的交集.⑧對于求復合函數(shù)定義域問題,一般步驟是:若已知的定義域為,其復合函數(shù)的定義域應由不等式解出.⑨對于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問題具體情況需對字母參數(shù)進行分類討論.⑩由實際問題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問題的實際意義.(4)求函數(shù)的值域或最值求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最?。ù螅┲?因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同.求函數(shù)值域與最值的常用方法:①觀察法:對于比較簡單的函數(shù),我們可以通過觀察直接得到值域或最值.②配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值.③判別式法:若函數(shù)可以化成一個系數(shù)含有的關于的二次方程,則在時,由于為實數(shù),故必須有,從而確定函數(shù)的值域或最值.④不等式法:利用基本不等式確定函數(shù)的值域或最值.⑤換元法:通過變量代換達到化繁為簡、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉(zhuǎn)化為三角函數(shù)的最值問題.⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關系確定函數(shù)的值域或最值.⑦數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值.⑧函數(shù)的單調(diào)性法.【1.2.2】函數(shù)的表示法(5)函數(shù)的表示方法表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種.解析法:就是用數(shù)學表達式表示兩個變量之間的對應關系.列表法:就是列出表格來表示兩個變量之間的對應關系.圖象法:就是用圖象表示兩個變量之間的對應關系.(6)映射的概念①設、是兩個集合,如果按照某種對應法則,對于集合中任何一個元素,在集合中都有唯一的元素和它對應,那么這樣的對應(包括集合,以及到的對應法則)叫做集合到的映射,記作.②給定一個集合到集合的映射,且.如果元素和元素對應,那么我們把元素叫做元素的象,元素叫做元素的原象.〖1.3〗函數(shù)的基本性質(zhì)【1.3.1】單調(diào)性與最大(?。┲担?)函數(shù)的單調(diào)性①定義及判定方法函數(shù)的性質(zhì)定義圖象判定方法函數(shù)的單調(diào)性如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x1.x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在這個區(qū)間上是增函數(shù).(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個區(qū)間圖象上升為增)(4)利用復合函數(shù)如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值x1、x2,當x1<x2時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個區(qū)間圖象下降為減)(4)利用復合函數(shù)②在公共定義域內(nèi),兩個增函數(shù)的和是增函數(shù),兩個減函數(shù)的和是減函數(shù),增函數(shù)減去一個減函數(shù)為增函數(shù),減函數(shù)減去一個增函數(shù)為減函數(shù).③對于復合函數(shù),令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減.yxo(2)打“√”函數(shù)yxo分別在、上為增函數(shù),分別在、上為減函數(shù).(3)最大(?。┲刀x①一般地,設函數(shù)的定義域為,如果存在實數(shù)滿足:(1)對于任意的,都有;(2)存在,使得.那么,我們稱是函數(shù)的最大值,記作.②一般地,設函數(shù)的定義域為,如果存在實數(shù)滿足:(1)對于任意的,都有;(2)存在,使得.那么,我們稱是函數(shù)的最小值,記作.【1.3.2】奇偶性(4)函數(shù)的奇偶性①定義及判定方法函數(shù)的性質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對于函數(shù)f(x)定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)叫做奇函數(shù).(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于原點對稱)如果對于函數(shù)f(x)定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)叫做偶函數(shù).(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于y軸對稱)②若函數(shù)為奇函數(shù),且在處有定義,則.③奇函數(shù)在軸兩側(cè)相對稱的區(qū)間增減性相同,偶函數(shù)在軸兩側(cè)相對稱的區(qū)間增減性相反.④在公共定義域內(nèi),兩個偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個偶函數(shù)與一個奇函數(shù)的積(或商)是奇函數(shù).〖補充知識〗函數(shù)的圖象(1)作圖利用描點法作圖:①確定函數(shù)的定義域;②化解函數(shù)解析式;③討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性);④畫出函數(shù)的圖象.利用基本函數(shù)圖象的變換作圖:要準確記憶一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等各種基本初等函數(shù)的圖象.①平移變換②伸縮變換③對稱變換(2)識圖對于給定函數(shù)的圖象,要能從圖象的左右、上下分別范圍、變化趨勢、對稱性等方面研究函數(shù)的定義域、值域、單調(diào)性、奇偶性,注意圖象與函數(shù)解析式中參數(shù)的關系.(3)用圖函數(shù)圖象形象地顯示了函數(shù)的性質(zhì),為研究數(shù)量關系問題提供了“形”的直觀性,它是探求解題途徑,獲得問題結(jié)果的重要工具.要重視數(shù)形結(jié)合解題的思想方法.第二章基本初等函數(shù)(Ⅰ)〖2.1〗指數(shù)函數(shù)【2.1.1】指數(shù)與指數(shù)冪的運算(1)根式的概念①如果,且,那么叫做的次方根.當是奇數(shù)時,的次方根用符號表示;當是偶數(shù)時,正數(shù)的正的次方根用符號表示,負的次方根用符號表示;0的次方根是0;負數(shù)沒有次方根.②式子叫做根式,這里叫做根指數(shù),叫做被開方數(shù).當為奇數(shù)時,為任意實數(shù);當為偶數(shù)時,.③根式的性質(zhì):;當為奇數(shù)時,;當為偶數(shù)時,.(2)分數(shù)指數(shù)冪的概念①正數(shù)的正分數(shù)指數(shù)冪的意義是:且.0的正分數(shù)指數(shù)冪等于0.②正數(shù)的負分數(shù)指數(shù)冪的意義是:且.0的負分數(shù)指數(shù)冪沒有意義.注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù).(3)分數(shù)指數(shù)冪的運算性質(zhì)①②③【2.1.2】指數(shù)函數(shù)及其性質(zhì)(4)指數(shù)函數(shù)函數(shù)名稱指數(shù)函數(shù)定義0101函數(shù)且叫做指數(shù)函數(shù)0101圖象定義域值域過定點圖象過定點,即當時,.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對 圖象的影響在第一象限內(nèi),越大圖象越高;在第二象限內(nèi),越大圖象越低.〖2.2〗對數(shù)函數(shù)【2.2.1】對數(shù)與對數(shù)運算對數(shù)的定義①若,則叫做以為底的對數(shù),記作,其中叫做底數(shù),叫做真數(shù).②負數(shù)和零沒有對數(shù).③對數(shù)式與指數(shù)式的互化:.(2)幾個重要的對數(shù)恒等式,,.(3)常用對數(shù)與自然對數(shù)常用對數(shù):,即;自然對數(shù):,即(其中…).(4)對數(shù)的運算性質(zhì)如果,那么①加法:②減法:③數(shù)乘:④⑤⑥換底公式:【2.2.2】對數(shù)函數(shù)及其性質(zhì)(5)對數(shù)函數(shù)函數(shù)名稱對數(shù)函數(shù)定義函數(shù)且叫做對數(shù)函數(shù)圖象001001定義域值域過定點圖象過定點,即當時,.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對 圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高.(6)反函數(shù)的概念設函數(shù)的定義域為,值域為,從式子中解出,得式子.如果對于在中的任何一個值,通過式子,在中都有唯一確定的值和它對應,那么式子表示是的函數(shù),函數(shù)叫做函數(shù)的反函數(shù),記作,習慣上改寫成.(7)反函數(shù)的求法①確定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式中反解出;③將改寫成,并注明反函數(shù)的定義域.(8)反函數(shù)的性質(zhì)①原函數(shù)與反函數(shù)的圖象關于直線對稱.②函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域.③若在原函數(shù)的圖象上,則在反函數(shù)的圖象上.④一般地,函數(shù)要有反函數(shù)則它必須為單調(diào)函數(shù).〖2.3〗冪函數(shù)(1)冪函數(shù)的定義一般地,函數(shù)叫做冪函數(shù),其中為自變量,是常數(shù).(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)①圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無圖象.冪函數(shù)是偶函數(shù)時,圖象分布在第一、二象限(圖象關于軸對稱);是奇函數(shù)時,圖象分布在第一、三象限(圖象關于原點對稱);是非奇非偶函數(shù)時,圖象只分布在第一象限.②過定點:所有的冪函數(shù)在都有定義,并且圖象都通過點.③單調(diào)性:如果,則冪函數(shù)的圖象過原點,并且在上為增函數(shù).如果,則冪函數(shù)的圖象在上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸.④奇偶性:當為奇數(shù)時,冪函數(shù)為奇函數(shù),當為偶數(shù)時,冪函數(shù)為偶函數(shù).當(其中互質(zhì),和),若為奇數(shù)為奇數(shù)時,則是奇函數(shù),若為奇數(shù)為偶數(shù)時,則是偶函數(shù),若為偶數(shù)為奇數(shù)時,則是非奇非偶函數(shù).⑤圖象特征:冪函數(shù),當時,若,其圖象在直線下方,若,其圖象在直線上方,當時,若,其圖象在直線上方,若,其圖象在直線下方.〖補充知識〗二次函數(shù)(1)二次函數(shù)解析式的三種形式①一般式:②頂點式:③兩根式:(2)求二次函數(shù)解析式的方法①已知三個點坐標時,宜用一般式.②已知拋物線的頂點坐標或與對稱軸有關或與最大(小)值有關時,常使用頂點式.③若已知拋物線與軸有兩個交點,且橫線坐標已知時,選用兩根式求更方便.(3)二次函數(shù)圖象的性質(zhì)①二次函數(shù)的圖象是一條拋物線,對稱軸方程為頂點坐標是.②當時,拋物線開口向上,函數(shù)在上遞減,在上遞增,當時,;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減,當時,.③二次函數(shù)當時,圖象與軸有兩個交點.(4)一元二次方程根的分布一元二次方程根的分布是二次函數(shù)中的重要內(nèi)容,這部分知識在初中代數(shù)中雖有所涉及,但尚不夠系統(tǒng)和完整,且解決的方法偏重于二次方程根的判別式和根與系數(shù)關系定理(韋達定理)的運用,下面結(jié)合二次函數(shù)圖象的性質(zhì),系統(tǒng)地來分析一元二次方程實根的分布.設一元二次方程的兩實根為,且.令,從以下四個方面來分析此類問題:①開口方向:②對稱軸位置:③判別式:④端點函數(shù)值符號.①k<x1≤x2②x1≤x2<k③x1<k<x2af(k)<0④k1<x1≤x2<k2⑤有且僅有一個根x1(或x2)滿足k1<x1(或x2)<k2f(k1)f(k2)0,并同時考慮f(k1)=0或f(k2)=0這兩種情況是否也符合⑥k1<x1<k2≤p1<x2<p2此結(jié)論可直接由⑤推出.(5)二次函數(shù)在閉區(qū)間上的最值設在區(qū)間上的最大值為,最小值為,令.(Ⅰ)當時(開口向上)①若,則②若,則③若,則xy0xy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)①若,則②,則xxy0aOabx2pqf(p)f(q)(Ⅱ)當時(開口向下)①若,則②若,則③若,則xy0xy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)①若,則②,則.xyxy0aOabx2pqf(p)f(q)xy0aOabx2pqf(p)f(q)第三章函數(shù)的應用一、方程的根與函數(shù)的零點1.函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。2.函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.3.函數(shù)零點的求法:求函數(shù)的零點:eq\o\ac(○,1)(代數(shù)法)求方程的實數(shù)根;

(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.4.二次函數(shù)的零點:二次函數(shù).1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.第一章空間幾何體1.1柱、錐、臺、球的結(jié)構(gòu)特征(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等表示:用各頂點字母,如五棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。(3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等表示:用各頂點字母,如五棱臺幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。(6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。1.2空間幾何體的三視圖和直觀圖1三視圖:正視圖:從前往后側(cè)視圖:從左往右俯視圖:從上往下2畫三視圖的原則:長對齊、高對齊、寬相等3直觀圖:斜二測畫法4斜二測畫法的步驟:(1).平行于坐標軸的線依然平行于坐標軸;(2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;(3).畫法要寫好。5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖1.3空間幾何體的表面積與體積(一)空間幾何體的表面積1棱柱、棱錐的表面積:各個面面積之和2圓柱的表面積3圓錐的表面積4圓臺的表面積5球的表面積(二)空間幾何體的體積1柱體的體積2錐體的體積3臺體的體積4球體的體積第二章直線與平面的位置關系2.1空間點、直線、平面之間的位置關系2.1.11平面含義:平面是無限延展的2平面的畫法及表示(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC.平面ABCD等。3三個公理:(1)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)符號表示為LA·αA∈LA·αB∈L=>LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)(2)公理2:過不在一條直線上的三點,有且只有一個平面。符號表示為:A、B、C三點不共線=>有且只有一個平面α,使A∈α、B∈α、C∈α。公理2作用:確定一個平面的依據(jù)。(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。符號表示為:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定兩個平面是否相交的依據(jù)2.1.2空間中直線與直線之間的位置關系1空間的兩條直線有如下三種關系:相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線:不同在任何一個平面內(nèi),沒有公共點。2公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設a、b、c是三條直線=>a∥ca=>a∥cc∥b強調(diào):公理4實質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。3等角定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補4注意點:①a'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關,為簡便,點O一般取在兩直線中的一條上;②兩條異面直線所成的角θ∈(0,);③當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;⑤計算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關系1.直線與平面有三種位置關系:(1)直線在平面內(nèi)——有無數(shù)個公共點(2)直線與平面相交——有且只有一個公共點(3)直線在平面平行——沒有公共點指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示aαa∩α=Aa∥α2.2.直線、平面平行的判定及其性質(zhì)2.2.1直線與平面平行的判定1.直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號表示:aαbβ=>a∥αa∥b2.2.2平面與平面平行的判定1.兩個平面平行的判定定理:一個平面內(nèi)的兩條交直線與另一個平面平行,則這兩個平面平行。符號表示:aβbβa∩b=Pβ∥αa∥αb∥α2.判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線的兩個平面平行。2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)1.定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號表示:a∥αaβa∥bα∩β=b作用:利用該定理可解決直線間的平行問題。2.定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。符號表示:α∥βα∩γ=aa∥bβ∩γ=b作用:可以由平面與平面平行得出直線與直線平行2.3直線、平面垂直的判定及其性質(zhì)2.3.1直線與平面垂直的判定1.定義如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖,直線與平面垂直時,它們唯一公共點P叫做垂足。Lpα2.判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想。2.3.2平面與平面垂直的判定1.二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形A梭lβBα2.二面角的記法:二面角α-l-β或α-AB-β3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)1.定理:垂直于同一個平面的兩條直線平行。2性質(zhì)定理:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。本章知識結(jié)構(gòu)框圖平面(公理1、公理2、公理3、公理4)平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關系空間直線、平面的位置關系直線與直線的位置關系直線與直線的位置關系平面與平面的位置關系直線與平面的位置關系 第三章直線與方程3.1直線的傾斜角和斜率3.1傾斜角和斜率1.直線的傾斜角的概念:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時,規(guī)定α=0°.2、傾斜角α的取值范圍:0°≤α<180°.當直線l與x軸垂直時,α=90°.3.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα⑴當直線l與x軸平行或重合時,α=0°,k=tan0°=0;⑵當直線l與x軸垂直時,α=90°,k不存在.由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.4.直線的斜率公式:給定兩點P1(x1,y1),P2(x2,y2),x1≠x2,用兩點的坐標來表示直線P1P2的斜率:斜率公式:k=y2-y1/x2-x13.1.2兩條直線的平行與垂直1.兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意:上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L22、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負倒數(shù);反之,如果它們的斜率互為負倒數(shù),那么它們互相垂直,即3.2.1直線的點斜式方程1.直線的點斜式方程:直線經(jīng)過點,且斜率為2、、直線的斜截式方程:已知直線的斜率為,且與軸的交點為3.2.2直線的兩點式方程1.直線的兩點式方程:已知兩點其中y-y1/y-y2=x-x1/x-x22、直線的截距式方程:已知直線與軸的交點為A,與軸的交點為B,其中3.2.3直線的一般式方程1.直線的一般式方程:關于的二元一次方程(A,B不同時為0)2.各種直線方程之間的互化。3.3直線的交點坐標與距離公式3.3.1兩直線的交點坐標1.給出例題:兩直線交點坐標L1:3x+4y-2=0L1:2x+y+2=0解:解方程組得x=-2,y=2所以L1與L2的交點坐標為M(-2,2)兩點間距離兩點間的距離公式點到直線的距離公式1.點到直線距離公式:點到直線的距離為:2.兩平行線間的距離公式:已知兩條平行線直線和的一般式方程為:,,則與的距離為圓與方程4.1.1圓的標準方程1.圓的標準方程:圓心為A(a,b),半徑為r的圓的方程2.點與圓的關系的判斷方法:(1)>,點在圓外(2)=,點在圓上(3)<,點在圓內(nèi)4.1.2圓的一般方程1.圓的一般方程:2.圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項.(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了.(3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯。4.2.1圓與圓的位置關系1.用點到直線的距離來判斷直線與圓的位置關系.設直線:,圓:,圓的半徑為,圓心到直線的距離為,則判別直線與圓的位置關系的依據(jù)有以下幾點:(1)當時,直線與圓相離;(2)當時,直線與圓相切;(3)當時,直線與圓相交;4.2.2圓與圓的位置關系兩圓的位置關系.設兩圓的連心線長為,則判別圓與圓的位置關系的依據(jù)有以下幾點:(1)當時,圓與圓相離;(2)當時,圓與圓外切;(3)當時,圓與圓相交;(4)當時,圓與圓內(nèi)切;(5)當時,圓與圓內(nèi)含;4.2.3直線與圓的方程的應用1.利用平面直角坐標系解決直線與圓的位置關系;2.過程與方法用坐標法解決幾何問題的步驟:第一步:建立適當?shù)钠矫嬷苯亲鴺讼?用坐標和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運算,解決代數(shù)問題;第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.4.3.1空間直角坐標系1.點M對應著唯一確定的有序?qū)崝?shù)組,、、分別是P、Q、R在、、軸上的坐標2.有序?qū)崝?shù)組,對應著空間直角坐標系中的一點3、空間中任意點M的坐標都可以用有序?qū)崝?shù)組來表示,該數(shù)組叫做點M在此空間直角坐標系中的坐標,記M,叫做點M的橫坐標,叫做點M的縱坐標,叫做點M的豎坐標。4.3.2空間兩點間的距離公式1.空間中任意一點到點之間的距離公式第二章統(tǒng)計2.1.1簡單隨機抽樣1.總體和樣本在統(tǒng)計學中,把研究對象的全體叫做總體.把每個研究對象叫做個體.把總體中個體的總數(shù)叫做總體容量.為了研究總體的有關性質(zhì),一般從總體中隨機抽取一部分:,,,研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。3.簡單隨機抽樣常用的方法:(1)抽簽法;⑵隨機數(shù)表法;⑶計算機模擬法;⑷使用統(tǒng)計軟件直接抽取。在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。4.抽簽法:(1)給調(diào)查對象群體中的每一個對象編號;(2)準備抽簽的工具,實施抽簽(3)對樣本中的每一個個體進行測量或調(diào)查例:請調(diào)查你所在的學校的學生做喜歡的體育活動情況。5.隨機數(shù)表法:例:利用隨機數(shù)表在所在的班級中抽取10位同學參加某項活動。2.1.2系統(tǒng)抽樣1.系統(tǒng)抽樣(等距抽樣或機械抽樣):把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。2.1.3分層抽樣1.分層抽樣(類型抽樣):先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟?然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。兩種方法:1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。2.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。分層標準:(1)以調(diào)查所要分析和研究的主要變量或相關的變量作為分層的標準。(2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。(3)以那些有明顯分層區(qū)分的變量作為分層變量。3.分層的比例問題:(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復到總體中各層實際的比例結(jié)構(gòu)。2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征1.本均值:2..樣本標準差:3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。雖然我們用樣本數(shù)據(jù)得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍(3)一組數(shù)據(jù)中的最大值和最小值對標準差的影響,區(qū)間的應用;“去掉一個最高分,去掉一個最低分”中的科學道理2.3.2兩個變量的線性相關1.概念:(1)回歸直線方程(2)回歸系數(shù)2.最小二乘法3.直線回歸方程的應用(1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關系(2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。(3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。4.應用直線回歸的注意事項(1)做回歸分析要有實際意義;(2)回歸分析前,最好先作出散點圖;(3)回歸直線不要外延。第三章概率3.1.1—3.1.2隨機事件的概率及概率的意義1.基本概念:(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率3.1.3概率的基本性質(zhì)1.基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2.概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A 與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。3.2.1—3.2.2古典概型及隨機數(shù)的產(chǎn)生1.(1)古典概型的使用條件:試驗結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;①求出總的基本事件數(shù);②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=3.3.1—3.3.2幾何概型及均勻隨機數(shù)的產(chǎn)生1.基本概念:(1)幾何概率模型:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)=;幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.第一章三角函數(shù)2.角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標軸上的角的集合為3.與角終邊相同的角的集合為4.長度等于半徑長的弧所對的圓心角叫做弧度.5.半徑為的圓的圓心角所對弧的長為,則角的弧度數(shù)的絕對值是.6、弧度制與角度制的換算公式:,,.7、若扇形的圓心角為,半徑為,弧長為,周長為,面積為,則,,.8、設是一個任意大小的角,的終邊上任意一點的坐標是,它與原點的距離是,則,,.9、三角函數(shù)在各象限的符號:第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.10、三角函數(shù)線:,,.11.角三角函數(shù)的基本關系:;..(3)倒數(shù)關系:12.函數(shù)的誘導公式:,,.,,.,,.,,.口訣:函數(shù)名稱不變,符號看象限.,.,.口訣:正弦與余弦互換,符號看象限.13、①的圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.②數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.14.函數(shù)的性質(zhì):①振幅:;②周期:;③頻率:;④相位:;⑤初相:.函數(shù),當時,取得最小值為;當時,取得最大值為,則,,.15.正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函數(shù)函數(shù)性質(zhì) y=cotx圖象定義域值域最值當時,;當時,.時,.時,.當時,;當時,.時,.時,.既無最大值也無最小值既無最大值也無最小值周期性 奇偶性奇函數(shù)偶函數(shù)奇函數(shù)奇函數(shù)單調(diào)性在上是增函數(shù);在上是減函數(shù).上是減函數(shù).在上是增函數(shù);在上是減函數(shù).上是減函數(shù).在上是增函數(shù).上是增函數(shù).對稱性對稱中心對稱軸對稱中心對稱軸對稱中心無對稱軸對稱中心無對稱軸第二章平面向量16.向量:既有大小,又有方向的量.數(shù)量:只有大小,沒有方向的量.有向線段的三要素:起點、方向、長度.零向量:長度為的向量.單位向量:長度等于個單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運算:⑴三角形法則的特點:首尾相連.⑵平行四邊形法則的特點:共起點.⑶三角形不等式:.⑷運算性質(zhì):①交換律:;②結(jié)合律:;③.⑸坐標運算:設,,則.18、向量減法運算:⑴三角形法則的特點:共起點,連終點,方向指向被減向量.⑵坐標運算:設,,則.設、兩點的坐標分別為,,則.19、向量數(shù)乘運算:⑴實數(shù)與向量的積是一個向量的運算叫做向量的數(shù)乘,記作.=1\*GB3①;②當時,的方向與的方向相同;當時,的方向與的方向相反;當時,.⑵運算律:①;②;③.⑶坐標運算:設,則.20、向量共線定理:向量與共線,當且僅當有唯一一個實數(shù),使.設,,其中,則當且僅當時,向量、共線.21、平面向量基本定理:如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使.(不共線的向量、作為這一平面內(nèi)所有向量的一組基底)22.分點坐標公式:設點是線段上的一點,、的坐標分別是,,當時,點的坐標是.(當23.平面向量的數(shù)量積:⑴.零向量與任一向量的數(shù)量積為.⑵性質(zhì):設和都是非零向量,則①.②當與同向時,;當與反向時,;或.③.⑶運算律:①;②;③.⑷坐標運算:設兩個非零向量,,則.若,則,或.設,,則.設、都是非零向量,,,是與的夾角,則.知識鏈接:空間向量空間向量的許多知識可由平面向量的知識類比而得.下面對空間向量在立體幾何中證明,求值的應用進行總結(jié)歸納.1.直線的方向向量和平面的法向量⑴.直線的方向向量:

若A.B是直線上的任意兩點,則為直線的一個方向向量;與平行的任意非零向量也是直線的方向向量.

⑵.平面的法向量:

若向量所在直線垂直于平面,則稱這個向量垂直于平面,記作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系數(shù)法):①建立適當?shù)淖鴺讼?②設平面的法向量為.③求出平面內(nèi)兩個不共線向量的坐標.④根據(jù)法向量定義建立方程組.⑤解方程組,取其中一組解,即得平面的法向量.(如圖)用向量方法判定空間中的平行關系⑴線線平行設直線的方向向量分別是,則要證明∥,只需證明∥,即.即:兩直線平行或重合兩直線的方向向量共線。

⑵線面平行①(法一)設直線的方向向量是,平面的法向量是,則要證明∥,只需證明,即.即:直線與平面平行直線的方向向量與該平面的法向量垂直且直線在平面外②(法二)要證明一條直線和一個平面平行,也可以在平面內(nèi)找一個向量與已知直線的方向向量是共線向量即可.⑶面面平行若平面的法向量為,平面的法向量為,要證∥,只需證∥,即證.即:兩平面平行或重合兩平面的法向量共線。

3.用向量方法判定空間的垂直關系

⑴線線垂直設直線的方向向量分別是,則要證明,只需證明,即.即:兩直線垂直兩直線的方向向量垂直。

⑵線面垂直①(法一)設直線的方向向量是,平面的法向量是,則要證明,只需證明∥,即.②(法二)設直線的方向向量是,平面內(nèi)的兩個相交向量分別為,若即:直線與平面垂直直線的方向向量與平面的法向量共線直線的方向向量與平面內(nèi)兩條不共線直線的方向向量都垂直。⑶面面垂直若平面的法向量為,平面的法向量為,要證,只需證,即證.即:兩平面垂直兩平面的法向量垂直。

4、利用向量求空間角⑴求異面直線所成的角已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,

則⑵求直線和平面所成的角①定義:平面的一條斜線和它在平面上的射影所成的銳角叫做這條斜線和這個平面所成的角②求法:設直線的方向向量為,平面的法向量為,直線與平面所成的角為,與的夾角為,則為的余角或的補角

的余角.即有:⑶求二面角①定義:平面內(nèi)的一條直線把平面分為兩個部分,其中的每一部分叫做半平面;從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,每個半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一點O,分別在兩個半平面內(nèi)作射線,則為二面角的平面角.如圖:OOABOABl②求法:設二面角的兩個半平面的法向量分別為,再設的夾角為,二面角的平面角為,則二面角為的夾角或其補角根據(jù)具體圖形確定是銳角或是鈍角:◆如果是銳角,則,即;如果是鈍角,則,即.5.利用法向量求空間距離⑴點Q到直線距離若Q為直線外的一點,在直線上,為直線的方向向量,=,則點Q到直線距離為⑵點A到平面的距離若點P為平面外一點,點M為平面內(nèi)任一點,平面的法向量為,則P到平面的距離就等于在法向量方向上的投影的絕對值.即⑶直線與平面之間的距離當一條直線和一個平面平行時,直線上的各點到平面的距離相等。由此可知,直線到平面的距離可轉(zhuǎn)化為求直線上任一點到平面的距離,即轉(zhuǎn)化為點面距離。即⑷兩平行平面之間的距離利用兩平行平面間的距離處處相等,可將兩平行平面間的距離轉(zhuǎn)化為求點面距離。即⑸異面直線間的距離設向量與兩異面直線都垂直,則兩異面直線間的距離就是在向量方向上投影的絕對值。即6.三垂線定理及其逆定理⑴三垂線定理:在平面內(nèi)的一條直線,如果它和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直推理模式: 概括為:垂直于射影就垂直于斜線.⑵三垂線定理的逆定理:在平面內(nèi)的一條直線,如果和這個平面的一條斜線垂直,那么它也和這條斜線的射影垂直推理模式:概括為:垂直于斜線就垂直于射影.7、三余弦定理設AC是平面內(nèi)的任一條直線,AD是的一條斜線AB在內(nèi)的射影,且BD⊥AD,垂足為D.設AB與(AD)所成的角為,AD與AC所成的角為,AB與AC所成的角為.則.8、面積射影定理已知平面內(nèi)一個多邊形的面積為,它在平面內(nèi)的射影圖形的面積為,平面與平面所成的二面角的大小為銳二面角,則9、一個結(jié)論長度為的線段在三條兩兩互相垂直的直線上的射影長分別為,夾角分別為,則有.(立體幾何中長方體對角線長的公式是其特例).\第三章三角恒等變換24.兩角和與差的正弦、余弦和正切公式:=1\*GB2⑴;=2\*GB2⑵;=3\*GB2⑶;=4\*GB2⑷;=5\*GB2⑸();⑹().25.二倍角的正弦、余弦和正切公式:⑴.=2\*GB2⑵升冪公式降冪公式,.26..27、(后兩個不用判斷符號,更加好用)28、合一變形把兩個三角函數(shù)的和或差化為“一個三角函數(shù),一個角,一次方”的形式。,其中.29、三角變換是運算化簡的過程中運用較多的變換,提高三角變換能力,要學會創(chuàng)設條件,靈活運用三角公式,掌握運算,化簡的方法和技能.常用的數(shù)學思想方法技巧如下:(1)角的變換:在三角化簡,求值,證明中,表達式中往往出現(xiàn)較多的相異角,可根據(jù)角與角之間的和差,倍半,互補,互余的關系,運用角的變換,溝通條件與結(jié)論中角的差異,使問題獲解,對角的變形如:①是的二倍;是的二倍;是的二倍;是的二倍;②;問:;;③;④;⑤;等等(2)函數(shù)名稱變換:三角變形中,常常需要變函數(shù)名稱為同名函數(shù)。如在三角函數(shù)中正余弦是基礎,通?;袨橄?變異名為同名。(3)常數(shù)代換:在三角函數(shù)運算,求值,證明中,有時需要將常數(shù)轉(zhuǎn)化為三角函數(shù)值,例如常數(shù)“1”的代換變形有:(4)冪的變換:降冪是三角變換時常用方法,對次數(shù)較高的三角函數(shù)式,一般采用降冪處理的方法。常用降冪公式有:;。降冪并非絕對,有時需要升冪,如對無理式常用升冪化為有理式,常用升冪公式有:;;(5)公式變形:三角公式是變換的依據(jù),應熟練掌握三角公式的順用,逆用及變形應用。如:;;;;;;;;;=;=;(其中;);;(6)三角函數(shù)式的化簡運算通常從:“角、名、形、冪”四方面入手;基本規(guī)則是:見切化弦,異角化同角,復角化單角,異名化同名,高次化低次,無理化有理,特殊值與特殊角的三角函數(shù)互化。如:;。第一章解三角形(一)解三角形:1、正弦定理:在中,、、分別為角、、的對邊,,則有(為的外接圓的半徑)2.正弦定理的變形公式:①,,;②,,;③;3.三角形面積公式:.4、余弦定理:在中,有,推論:第二章數(shù)列1.數(shù)列中與之間的關系:注意通項能否合并。2.等差數(shù)列:⑴定義:如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即-=d,(n≥2,n∈N),那么這個數(shù)列就叫做等差數(shù)列。⑵等差中項:若三數(shù)成等差數(shù)列⑶通項公式:或⑷前項和公式:⑸常用性質(zhì):①若,則;②下標為等差數(shù)列的項,仍組成等差數(shù)列;③數(shù)列(為常數(shù))仍為等差數(shù)列;④若、是等差數(shù)列,則、(、是非零常數(shù))、、,…也成等差數(shù)列。⑤單調(diào)性:的公差為,則:?。檫f增數(shù)列;ⅱ)為遞減數(shù)列;ⅲ)為常數(shù)列;⑥數(shù)列{}為等差數(shù)列(p,q是常數(shù))⑦若等差數(shù)列的前項和,則、、…是等差數(shù)列。3.等比數(shù)列⑴定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。⑵等比中項:若三數(shù)成等比數(shù)列(同號)。反之不一定成立。⑶通項公式:⑷前項和公式:⑸常用性質(zhì)①若,則;②為等比數(shù)列,公比為(下標成等差數(shù)列,則對應的項成等比數(shù)列)③數(shù)列(為不等于零的常數(shù))仍是公比為的等比數(shù)列;正項等比數(shù)列;則是公差為的等差數(shù)列;④若是等比數(shù)列,則是等比數(shù)列,公比依次是⑤單調(diào)性:為遞增數(shù)列;為遞減數(shù)列;為常數(shù)列;為擺動數(shù)列;⑥既是等差數(shù)列又是等比數(shù)列的數(shù)列是常數(shù)列。⑦若等比數(shù)列的前項和,則、、…是等比數(shù)列.4.非等差、等比數(shù)列通項公式的求法類型Ⅰ觀察法:已知數(shù)列前若干項,求該數(shù)列的通項時,一般對所給的項觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫出此數(shù)列的一個通項。類型Ⅱ公式法:若已知數(shù)列的前項和與的關系,求數(shù)列的通項可用公式構(gòu)造兩式作差求解。用此公式時要注意結(jié)論有兩種可能,一種是“一分為二”,即分段式;另一種是“合二為一”,即和合為一個表達,(要先分和兩種情況分別進行運算,然后驗證能否統(tǒng)一)。類型Ⅲ累加法:形如型的遞推數(shù)列(其中是關于的函數(shù))可構(gòu)造:將上述個式子兩邊分別相加,可得:①若是關于的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和;②若是關于的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;③若是關于的二次函數(shù),累加后可分組求和;④若是關于的分式函數(shù),累加后可裂項求和.類型Ⅳ累乘法:形如型的遞推數(shù)列(其中是關于的函數(shù))可構(gòu)造:將上述個式子兩邊分別相乘,可得:有時若不能直接用,可變形成這種形式,然后用這種方法求解。類型Ⅴ構(gòu)造數(shù)列法:㈠形如(其中均為常數(shù)且)型的遞推式:(1)若時,數(shù)列{}為等差數(shù)列;(2)若時,數(shù)列{}為等比數(shù)列;(3)若且時,數(shù)列{}為線性遞推數(shù)列,其通項可通過待定系數(shù)法構(gòu)造等比數(shù)列來求.方法有如下兩種:法一:設,展開移項整理得,與題設比較系數(shù)(待定系數(shù)法)得,即構(gòu)成以為首項,以為公比的等比數(shù)列.再利用等比數(shù)列的通項公式求出的通項整理可得法二:由得兩式相減并整理得即構(gòu)成以為首項,以為公比的等比數(shù)列.求出的通項再轉(zhuǎn)化為類型Ⅲ(累加法)便可求出㈡形如型的遞推式:⑴當為一次函數(shù)類型(即等差數(shù)列)時:法一:設,通過待定系數(shù)法確定的值,轉(zhuǎn)化成以為首項,以為公比的等比數(shù)列,再利用等比數(shù)列的通項公式求出的通項整理可得法二:當的公差為時,由遞推式得:,兩式相減得:,令得:轉(zhuǎn)化為類型Ⅴ㈠求出,再用類型Ⅲ(累加法)便可求出⑵當為指數(shù)函數(shù)類型(即等比數(shù)列)時:法一:設,通過待定系數(shù)法確定的值,轉(zhuǎn)化成以為首項,以為公比的等比數(shù)列,再利用等比數(shù)列的通項公式求出的通項整理可得法二:當的公比為時,由遞推式得:——①,,兩邊同時乘以得——②,由①②兩式相減得,即,在轉(zhuǎn)化為類型Ⅴ㈠便可求出法三:遞推公式為(其中p,q均為常數(shù))或(其中p,q,r均為常數(shù))時,要先在原遞推公式兩邊同時除以,得:,引入輔助數(shù)列(其中),得:再應用類型Ⅴ㈠的方法解決。⑶當為任意數(shù)列時,可用通法:在兩邊同時除以可得到,令,則,在轉(zhuǎn)化為類型Ⅲ(累加法),求出之后得.類型Ⅵ對數(shù)變換法:形如型的遞推式:在原遞推式兩邊取對數(shù)得,令得:,化歸為型,求出之后得(注意:底數(shù)不一定要取10,可根據(jù)題意選擇)。類型Ⅶ倒數(shù)變換法:形如(為常數(shù)且)的遞推式:兩邊同除于,轉(zhuǎn)化為形式,化歸為型求出的表達式,再求;還有形如的遞推式,也可采用取倒數(shù)方法轉(zhuǎn)化成形式,化歸為型求出的表達式,再求.類型Ⅷ形如型的遞推式:用待定系數(shù)法,化為特殊數(shù)列的形式求解。方法為:設,比較系數(shù)得,可解得,于是是公比為的等比數(shù)列,這樣就化歸為型。總之,求數(shù)列通項公式可根據(jù)數(shù)列特點采用以上不同方法求解,對不能轉(zhuǎn)化為以上方法求解的數(shù)列,可用歸納、猜想、證明方法求出數(shù)列通項公式5.非等差、等比數(shù)列前項和公式的求法⑴錯位相減法①若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則數(shù)列的求和就要采用此法.②將數(shù)列的每一項分別乘以的公比,然后在錯位相減,進而可得到數(shù)列的前項和.此法是在推導等比數(shù)列的前項和公式時所用的方法.⑵裂項相消法一般地,當數(shù)列的通項時,往往可將變成兩項的差,采用裂項相消法求和.可用待定系數(shù)法進行裂項:設,通分整理后與原式相比較,根據(jù)對應項系數(shù)相等得,從而可得常見的拆項公式有:①②③④⑤⑶分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當拆開,可分為幾個等差、等比或常見的數(shù)列,然后分別求和,再將其合并即可.一般分兩步:①找通向項公式②由通項公式確定如何分組.⑷倒序相加法如果一個數(shù)列,與首末兩項等距的兩項之和等于首末兩項之和,則可用把正著寫與倒著寫的兩個和式相加,就得到了一個常數(shù)列的和,這種求和方法稱為倒序相加法。特征:⑸記住常見數(shù)列的前項和:①②③§3.1.不等關系與不等式1.不等式的基本性質(zhì)①(對稱性)②(傳遞性)③(可加性)(同向可加性)(異向可減性)④(可積性)⑤(同向正數(shù)可乘性)(異向正數(shù)可除性)⑥(平方法則)⑦(開方法則)⑧(倒數(shù)法則)2.幾個重要不等式①,(當且僅當時取號).變形公式:②(基本不等式),(當且僅當時取到等號).變形公式:用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.③(三個正數(shù)的算術—幾何平均不等式)(當且僅當時取到等號).④(當且僅當時取到等號).⑤(當且僅當時取到等號).⑥(當僅當a=b時取等號)(當僅當a=b時取等號)⑦其中規(guī)律:小于1同加則變大,大于1同加則變小.⑧⑨絕對值三角不等式命題與邏輯結(jié)構(gòu)知識點:1.命題:用語言、符號或式子表達的,可以判斷真假的陳述句.真命題:判斷為真的語句.假命題:判斷為假的語句.2.“若,則”形式的命題中的稱為命題的條件,稱為命題的結(jié)論.3.對于兩個命題,如果一個命題的條件和結(jié)論分別是另一個命題的結(jié)論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題。若原命題為“若,則”,它的逆命題為“若,則”.4.對于兩個命題,如果一個命題的條件和結(jié)論恰好是另一個命題的條件的否定和結(jié)論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.若原命題為“若,則”,則它的否命題為“若,則”.5、對于兩個命題,如果一個命題的條件和結(jié)論恰好是另一個命題的結(jié)論的否定和條件的否定,則這兩個命題稱為互為逆否命題。其中一個命題稱為原命題,另一個稱為原命題的逆否命題。若原命題為“若,則”,則它的否命題為“若,則”。6.四種命題的真假性:原命題逆命題否命題逆否命題真真真真真假假真假真真假假假假假四種命題的真假性之間的關系:兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.7、若,則是的充分條件,是的必要條件.若,則是的充要條件(充分必要條件).8、用聯(lián)結(jié)詞“且”把命題和命題聯(lián)結(jié)起來,得到一個新命題,記作.當、都是真命題時,是真命題;當、兩個命題中有一個命題是假命題時,是假命題.用聯(lián)結(jié)詞“或”把命題和命題聯(lián)結(jié)起來,得到一個新命題,記作.當、兩個命題中有一個命題是真命題時,是真命題;當、兩個命題都是假命題時,是假命題.對一個命題全盤否定,得到一個新命題,記作.若是真命題,則必是假命題;若是假命題,則必是真命題.9、短語“對所有的”、“對任意一個”在邏輯中通常稱為全稱量詞,用“”表示.含有全稱量詞的命題稱為全稱命題.全稱命題“對中任意一個,有成立”,記作“,”.短語“存在一個”、“至少有一個”在邏輯中通常稱為存在量詞,用“”表示.含有存在量詞的命題稱為特稱命題.特稱命題“存在中的一個,使成立”,記作“,”.10、全稱命題:,,它的否定:,。全稱命題的否定是特稱命題。特稱命題:,,它的否定:,。特稱命題的否定是全稱命題。第二章:圓錐曲線知識點:1、求曲線的方程(點的軌跡方程)的步驟:建、設、限、代、化①建立適當?shù)闹苯亲鴺讼?;②設動點及其他的點;③找出滿足限制條件的等式;④將點的坐標代入等式;⑤化簡方程,并驗證(查漏除雜)。2.平面內(nèi)與兩個定點,的距離之和等于常數(shù)(大于)的點的軌跡稱為橢圓。這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距。3、橢圓的幾何性質(zhì):焦點的位置焦點在軸上焦點在軸上圖形標準方程第一定義到兩定點的距離之和等于常數(shù)2,即()第二定義與一定點的距離和到一定直線的距離之比為常數(shù),即范圍且且頂點、、、、軸長長軸的長短軸的長對稱性關于軸、軸對稱,關于原點中心對稱焦點、、焦距離心率準線方程焦半徑左焦半徑:右焦半徑:右焦半徑:下焦半徑:上焦半徑:上焦半徑:焦點三角形面積通徑過焦點且垂直于長軸的弦叫通徑:(焦點)弦長公式,4.設是橢圓上任一點,點到對應準線的距離為,點到對應準線的距離為,則。5.平面內(nèi)與兩個定點,的距離之差的絕對值等于常數(shù)(小于)的點的軌跡稱為雙曲線。這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距。6、雙曲線的幾何性質(zhì):焦點的位置焦點在軸上焦點在軸上圖形標準方程第一定義到兩定點的距離之差的絕對值等于常數(shù),即()第二定義與一定點的距離和到一定直線的距離之比為常數(shù),即范圍或,或,頂點、、軸長實軸的長虛軸的長對稱性關于軸、軸對稱,關于原點中心對稱焦點、、焦距離心率準線方程漸近線方程焦半徑在右支在左支在上支在下支焦點三角形面積通徑過焦點且垂直于長軸的弦叫通徑:7、實軸和虛軸等長的雙曲線稱為等軸雙曲線。8、設是雙曲線上任一點,點到對應準線的距離為,點到對應準線的距離為,則。9、平面內(nèi)與一個定點和一條定直線的距離相等的點的軌跡稱為拋物線.定點稱為拋物線的焦點,定直線稱為拋物線的準線.10、過拋物線的焦點作垂直于對稱軸且交拋物線于、兩點的線段,稱為拋物線的“通徑”,即.11.焦半徑公式:若點在拋物線上,焦點為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論