![安徽省濉溪縣2022年九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M03/16/2E/wKhkFmaVy9iAEoptAAHKy9wKu1g982.jpg)
![安徽省濉溪縣2022年九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M03/16/2E/wKhkFmaVy9iAEoptAAHKy9wKu1g9822.jpg)
![安徽省濉溪縣2022年九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M03/16/2E/wKhkFmaVy9iAEoptAAHKy9wKu1g9823.jpg)
![安徽省濉溪縣2022年九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M03/16/2E/wKhkFmaVy9iAEoptAAHKy9wKu1g9824.jpg)
![安徽省濉溪縣2022年九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M03/16/2E/wKhkFmaVy9iAEoptAAHKy9wKu1g9825.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數(shù)表達式為()A.B.C.D.2.在平面直角坐標系xoy中,△OAB各頂點的坐標分別為:O(0,0),A(1,2),B(3,0),以原點O為位似中心,相似比為2,將△OAB放大,若B點的對應(yīng)點B′的坐標為(﹣6,0),則A點的對應(yīng)點A′坐標為()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)3.關(guān)于的一元二次方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.根的情況無法判斷4.二次函數(shù)的圖象向左平移個單位,得到新的圖象的函數(shù)表達式是()A. B.C. D.5.如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標分別為(-1,-1)、(2,-1),點B的橫坐標的最大值為3,則點A的橫坐標的最小值為()A.-3 B.-2.5 C.-2 D.-1.56.如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為-3和1;④a-2b+c≥0,其中正確的命題是()A.①②③ B.①④ C.①③ D.①③④7.如圖,已知在平面直角坐標系xOy中,O為坐標原點,拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),點C是拋物線的頂點,且⊙C與y軸相切,點P為⊙C上一動點.若點D為PA的中點,連結(jié)OD,則OD的最大值是()A. B. C.2 D.8.如圖,過反比例函數(shù)(x>0)的圖象上任意兩點A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)△AOC和△BOD的面積分別是S1、S2,比較它們的大小,可得()A.S1>S2 B.S1=S2 C.S1<S2 D.大小關(guān)系不能確定9.二次函數(shù)圖象的一部分如圖所示,頂點坐標為,與軸的一個交點的坐標為(-3,0),給出以下結(jié)論:①;②;③若、為函數(shù)圖象上的兩點,則;④當時方程有實數(shù)根,則的取值范圍是.其中正確的結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個10.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為()A. B.2 C. D.211.已知(a≠0,b≠0),下列變形錯誤的是()A. B.2a=3b C. D.3a=2b12.把二次函數(shù),用配方法化為的形式為()A. B.C. D.二、填空題(每題4分,共24分)13.若反比例函數(shù)的圖像在二、四象限,其圖像上有兩點,,則______(填“”或“”或“”).14.如圖,AB為的直徑,弦CD⊥AB于點E,點F在圓上,且=,BE=2,CD=8,CF交AB于點G,則弦CF的長度為__________,AG的長為____________.15.已知的半徑為,,是的兩條弦,,,,則弦和之間的距離是__________.16.把拋物線y=2x2向上平移3個單位,得到的拋物線的解析式為_______________.17.若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有兩個不相等的實數(shù)根,則k的取值范圍是__________.18.一個不透明的口袋中裝有個紅球和個黃球,這些球除了顏色外,無其他差別,從中隨機摸出一個球,恰好是紅球的概率為__________.三、解答題(共78分)19.(8分)如圖,在中,對角線AC與BD相交于點O,,,.求證:四邊形ABCD是菱形.20.(8分)如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB.(1)證明:△ADC∽△ACB;(2)若AD=2,BD=6,求邊AC的長.21.(8分)如圖,在△ABC中,點O為BC邊上一點,⊙O經(jīng)過A、B兩點,與BC邊交于點E,點F為BE下方半圓弧上一點,F(xiàn)E⊥AC,垂足為D,∠BEF=2∠F.(1)求證:AC為⊙O切線.(2)若AB=5,DF=4,求⊙O半徑長.22.(10分)東坡商貿(mào)公司購進某種水果成本為20元/,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(元/)與時間(天)之間的函數(shù)關(guān)系式,為整數(shù),且其日銷售量()與時間(天)的關(guān)系如下表:時間(天)1361020…日銷售量()11811410810080…(1)已知與之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量;(2)哪一天的銷售利潤最大?最大日銷售利潤為多少?23.(10分)閱讀材料:材料2若一元二次方程ax2+bx+c=0(a≠0)的兩個根為x2,x2則x2+x2=﹣,x2x2=.材料2已知實數(shù)m,n滿足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.解:由題知m,n是方程x2﹣x﹣2=0的兩個不相等的實數(shù)根,根據(jù)材料2得m+n=2,mn=﹣2,所以=﹣2.根據(jù)上述材料解決以下問題:(2)材料理解:一元二次方程5x2+20x﹣2=0的兩個根為x2,x2,則x2+x2=,x2x2=.(2)類比探究:已知實數(shù)m,n滿足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:(2)思維拓展:已知實數(shù)s、t分別滿足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.24.(10分)某班為推薦選手參加學(xué)校舉辦的“祖國在我心中”演講比賽活動,先在班級中進行預(yù)賽,班主任根據(jù)學(xué)生的成績從高到低劃分為A,B,C,D四個等級,并繪制了不完整的兩種統(tǒng)計圖表.請根據(jù)圖中提供的信息,回答下列問題:(1)a的值為;(2)求C等級對應(yīng)扇形的圓心角的度數(shù);(3)獲得A等級的4名學(xué)生中恰好有1男3女,該班將從中隨機選取2人,參加學(xué)校舉辦的演講比賽,請利用列表法或畫樹狀圖法,求恰好選中一男一女參加比賽的概率.25.(12分)有5張不透明的卡片,除正面上的圖案不同外,其他均相同.將這5張卡片背面向上洗勻后放在桌面上.(1)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為_____.(2)若從中隨機抽取1張卡片后不放回,再隨機抽取1張,請用畫樹狀圖或列表的方法,求兩次所抽取的卡片恰好都是軸對稱圖形的概率.26.如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:①分別以點A、B為圓心,以大于12AB的長為半徑作弧,兩弧分別相交于點P、Q②作直線PQ分別交邊AB、BC于點E、D.(1)小明所求作的直線DE是線段AB的;(2)聯(lián)結(jié)AD,AD=7,sin∠DAC=17,BC=9,求AC
參考答案一、選擇題(每題4分,共48分)1、A【分析】先確定拋物線y=x2的頂點坐標為(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后所得對應(yīng)點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應(yīng)點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.
故選A.2、A【分析】根據(jù)相似比為2,B′的坐標為(﹣6,0),判斷A′在第三象限即可解題.【詳解】解:由題可知OA′:OA=2:1,∵B′的坐標為(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故選A.【點睛】本題考查了圖形的位似,屬于簡單題,確定A′的象限是解題關(guān)鍵.3、A【解析】若△>0,則方程有兩個不等式實數(shù)根,若△=0,則方程有兩個相等的實數(shù)根,若△<0,則方程沒有實數(shù)根.求出△與零的大小,結(jié)果就出來了.【詳解】解:∵△=,∴方程有兩個不相等的實數(shù)根【點睛】本題主要考查根的判別式,掌握一元二次方程的根的判別式是關(guān)鍵.4、C【分析】根據(jù)向左平移橫坐標減求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵二次函數(shù)的圖象向左平移個單位,∴平移后的拋物線的頂點坐標為(-2,0),∴新的圖象的二次函數(shù)表達式是:;故選擇:C.【點睛】本題考查了二次函數(shù)圖象與幾何變換,此類題目,利用頂點的變化確定函數(shù)解析式的變化更簡便,平移的規(guī)律:左加右減,上加下減.5、C【分析】根據(jù)頂點P在線段MN上移動,又知點M、N的坐標分別為(-1,-2)、(1,-2),分別求出對稱軸過點M和N時的情況,即可判斷出A點坐標的最小值.【詳解】解:根據(jù)題意知,點B的橫坐標的最大值為3,當對稱軸過N點時,點B的橫坐標最大,∴此時的A點坐標為(1,0),當對稱軸過M點時,點A的橫坐標最小,此時的B點坐標為(0,0),∴此時A點的坐標最小為(-2,0),∴點A的橫坐標的最小值為-2,故選:C.【點睛】本題主要考查二次函數(shù)的綜合題的知識點,解答本題的關(guān)鍵是熟練掌握二次函數(shù)的圖象對稱軸的特點,此題難度一般.6、C【分析】根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對稱軸為x=-1,且過點(1,0),根據(jù)對稱軸可得拋物線與x軸的另一個交點為(-3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=-1,可對②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關(guān)系,可對③做出判斷;根據(jù)a、c的符號,以及對稱軸可對④做出判斷;最后綜合得出答案.【詳解】解:由圖象可知:拋物線開口向上,對稱軸為直線x=-1,過(1,0)點,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;對稱軸為直線x=-1,即:整理得,b=2a,因此②不正確;由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(-3,0),因此方程ax2+bx+c=0的兩根分別為-3和1;故③是正確的;
由a>0,b>0,c<0,且b=2a,則a-2b+c=a-4a+c=-3a+c<0,因此④不正確;
故選:C.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,能夠根據(jù)開口判斷a的符號,根據(jù)與x軸,y軸的交點判斷c的值以及b用a表示出的代數(shù)式是解題的關(guān)鍵.7、B【分析】取點H(6,0),連接PH,由待定系數(shù)法可求拋物線解析式,可得點C坐標,可得⊙C半徑為4,由三角形中位線的定理可求OD=PH,當點C在PH上時,PH有最大值,即可求解.【詳解】如圖,取點H(6,0),連接PH,∵拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),∴,解得:,∴拋物線解析式為:y=﹣,∴頂點C(﹣3,4),∴⊙C半徑為4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大時,OD有最大值,∴當點C在PH上時,PH有最大值,∴PH最大值為=3+=3+,∴OD的最大值為:,故選B.【點睛】本題主要考查了切線的性質(zhì),二次函數(shù)的性質(zhì),三角形中位線定理等知識,解決本題的關(guān)鍵是要熟練掌握二次函數(shù)性質(zhì)和三角形中位線的性質(zhì).8、B【分析】根據(jù)反比例函數(shù)的幾何意義,直接求出S1、S1的值即可進行比較.【詳解】由于A、B均在反比例函數(shù)的圖象上,且AC⊥x軸,BD⊥x軸,則S1=;S1=.故S1=S1.故選:B.【點睛】此題考查了反比例函數(shù)k的幾何意義,找到相關(guān)三角形,求出k的絕對值的一半即為三角形的面積.9、D【分析】由二次函數(shù)的圖象可知,再根據(jù)對稱軸為x=-1,得出b=2a<0,進而判斷①,當x=-2時可判斷②正確,然后根據(jù)拋物線的對稱性以及增減性可判斷③,再根據(jù)方程的根與拋物線與x交點的關(guān)系可判斷④.【詳解】解:∵拋物線開口向下,交y軸正半軸∴∵拋物線對稱軸為x=-1,∴b=2a<0∴①正確;當x=-2時,位于y軸的正半軸故②正確;點的對稱點為∵當時,拋物線為增函數(shù),∴③正確;若當時方程有實數(shù)根,則需與x軸有交點則二次函數(shù)向下平移的距離即為t的取值范圍,則的取值范圍是,④正確.故選:D.【點睛】本題考查的知識點是二次函數(shù)圖象及其性質(zhì),熟悉二次函數(shù)的圖象上點的坐標特征以及求頂點坐標的公式是解此題額關(guān)鍵.10、C【分析】通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應(yīng)用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質(zhì)和一次函數(shù)圖象性質(zhì),解答過程中要注意函數(shù)圖象變化與動點位置之間的關(guān)系.11、B【分析】根據(jù)兩內(nèi)項之積等于兩外項之積對各選項分析判斷即可得解.【詳解】解:由得,3a=2b,A、由等式性質(zhì)可得:3a=2b,正確;B、由等式性質(zhì)可得2a=3b,錯誤;C、由等式性質(zhì)可得:3a=2b,正確;D、由等式性質(zhì)可得:3a=2b,正確;故選B.【點睛】本題考查了比例的性質(zhì),主要利用了兩內(nèi)項之積等于兩外項之積.12、B【分析】先提取二次項系數(shù),再根據(jù)完全平方公式整理即可.【詳解】解:;故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的最值,二次函數(shù)的三種形式的轉(zhuǎn)化,難點在于(3)判斷出二次函數(shù)取最大值時的自變量x的值.二、填空題(每題4分,共24分)13、<【解析】分析:根據(jù)反比例函數(shù)的增減性即可得出答案.詳解:∵圖像在二、四象限,∴在每一個象限內(nèi),y隨著x的增大而增大,∵1<2,∴.點睛:本題主要考查的是反比例函數(shù)的增減性,屬于基礎(chǔ)題型.對于反比例函數(shù),當k>0時,在每一個象限內(nèi),y隨著x的增大而減小;當k<0時,在每一個象限內(nèi),y隨著x的增大而增大.14、;【分析】如圖(見解析),連接CO、DO,并延長DO交CF于H,由垂徑定理可知CE,在中,可以求出半徑CO的長;又由=和垂徑定理得,根據(jù)圓周角定理可得,從而可知,在中可求出FG,也就可求得CF的長度;在中利用勾股定理求出DH,再求出,同樣地,在中利用余弦函數(shù)求出OG,從而可求得.【詳解】,,,(垂徑定理)連接,設(shè),則在中,解得,連接DO并延長交CF于H=,由垂徑定理可知,是所對圓周角,是所對圓心角,且=2,,由勾股定理得:,.【點睛】本題考查了垂徑定理、圓周角定理、直角三角形中的余弦三角函數(shù),通過構(gòu)造輔助線,利用垂徑定理和圓周角定理是解題關(guān)鍵.15、2或1【解析】分析:分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.詳解:①當弦AB和CD在圓心同側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②當弦AB和CD在圓心異側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=1cm.∴AB與CD之間的距離為1cm或2cm.故答案為2或1.點睛:本題考查了勾股定理和垂徑定理的應(yīng)用.此題難度適中,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用,小心別漏解.16、【解析】由“上加下減”的原則可知,將拋物線向上平移3單位,得到的拋物線的解析式是故答案為【點睛】二次函數(shù)圖形平移規(guī)律:左加右減,上加下減.17、k>﹣1且k≠1.【解析】由關(guān)于x的一元二次方程kx2-2x-1=1有兩個不相等的實數(shù)根,即可得判別式△>1且k≠1,則可求得k的取值范圍.【詳解】解:∵關(guān)于x的一元二次方程kx2﹣2x﹣1=1有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范圍是:k>﹣1且k≠1.故答案為:k>﹣1且k≠1.【點睛】此題考查了一元二次方程根的判別式的應(yīng)用.此題比較簡單,解題的關(guān)鍵是掌握一元二次方程根的情況與判別式△的關(guān)系:(1)△>1?方程有兩個不相等的實數(shù)根;(2)△=1?方程有兩個相等的實數(shù)根;(3)△<1?方程沒有實數(shù)根.18、【分析】直接利用概率公式求解即可求得答案.【詳解】∵一個不透明的口袋中裝有3個紅球和9個黃球,這些球除了顏色外無其他差別,
∴從中隨機摸出一個小球,恰好是紅球的概率為:.故答案為:.【點睛】本題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共78分)19、見解析【分析】根據(jù)平行四邊形的性質(zhì)得到AO和BO,再根據(jù)AB,利用勾股定理的逆定理得到∠AOB=90°,從而判定菱形.【詳解】解:∵四邊形ABCD是平行四邊形,AC=16,BD=12,∴AO=8,BO=6,∵AB=10,∴AO2+BO2=AB2,∴∠AOB=90°,即AC⊥BD,∴平行四邊形ABCD是菱形.【點睛】本題考查了菱形的判定,勾股定理的逆定理,解題的關(guān)鍵是證明∠AOB=90°.20、(1)見解析;(2)1.【分析】(1)根據(jù)兩角對應(yīng)相等的兩個三角形相似即可證明;(2)利用相似三角形的對應(yīng)邊對應(yīng)成比例列式求解即可.【詳解】(1)證明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴=,AB=AD+DB=2+6=8∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=1.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.靈活運用相似三角形的性質(zhì)進行幾何計算.21、(1)見解析;(2)【分析】(1)連結(jié)OA,根據(jù)已知條件得到∠AOE=∠BEF,根據(jù)平行線的性質(zhì)得到OA⊥AC,于是得到結(jié)論;(2)連接OF,設(shè)∠AFE=α,則∠BEF=2α,得到∠BAF=∠BEF=2α,得到∠OAF=∠BAO=α,求得∠AFO=∠OAF=α,根據(jù)全等三角形的性質(zhì)得到AB=AF=5,由勾股定理得到AD==3,根據(jù)圓周角定理得到∠BAE=90°,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】解(1)證明:連結(jié)OA,∴∠AOE=2∠F,∵∠BEF=2∠F,∴∠AOE=∠BEF,∴AO∥DF,∵DF⊥AC,∴OA⊥AC,∴AC為⊙O切線;(2)解:連接OF,∵∠BEF=2∠F,∴設(shè)∠AFE=α,則∠BEF=2α,∴∠BAF=∠BEF=2α,∵∠B=∠AFE=α,∴∠BAO=∠B=α,∴∠OAF=∠BAO=α,∵OA=OF,∴∠AFO=∠OAF=α,∴△ABO≌△AFO(AAS),∴AB=AF=5,∵DF=4,∴AD==3,∵BE是⊙O的直徑,∴∠BAE=90°,∴∠BAE=∠FDA,∵∠B=∠AFD,∴△ABE∽△DFA,∴=,∴=,∴BE=,∴⊙O半徑=.【點睛】本題考查了切線的判定和性質(zhì),相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.22、(1)第30天的日銷售量為;(2)當時,【分析】(1)設(shè)y=kt+b,利用待定系數(shù)法即可解決問題.(2)日利潤=日銷售量×每kg利潤,據(jù)此分別表示前24天和后24天的日利潤,根據(jù)函數(shù)性質(zhì)求最大值后比較得結(jié)論.【詳解】(1)設(shè)y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,,∴y=-2t+1.將t=30代入上式,得:y=-2×30+1=2.所以在第30天的日銷售量是2kg.(2)設(shè)第天的銷售利潤為元,則當時,由題意得,==∴t=20時,w最大值為120元.當時,∵對稱軸t=44,a=2>0,∴在對稱軸左側(cè)w隨t增大而減小,∴t=25時,w最大值為210元,綜上所述第20天利潤最大,最大利潤為120元.【點睛】此題主要考查了二次函數(shù)的應(yīng)用,熟練掌握各函數(shù)的性質(zhì)和圖象特征,針對所給條件作出初步判斷后需驗證其正確性,最值問題需由函數(shù)的性質(zhì)求解時,正確表達關(guān)系式是關(guān)鍵.23、(2)-2,-;(2)﹣;(2)﹣.【分析】(2)直接利用根與系數(shù)的關(guān)系求解;(2)把m、n可看作方程7x2﹣7x﹣2=0,利用根與系數(shù)的關(guān)系得到m+n=2,mn=﹣,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整體的方法計算;(2)先把t2+99t+29=0變形為29?()2+99?+2=0,則把實數(shù)s和可看作方程29x2+99x+2=0的兩根,利用根與系數(shù)的關(guān)系得到s+=﹣,s?=,然后變形為s+4?+,再利用整體代入的方法計算.【詳解】解:(2)x2+x2=﹣=﹣2,x2x2=﹣;故答案為﹣2;﹣;(2)∵7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,∴m、n可看作方程7x2﹣7x﹣2=0,∴m+n=2,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×2=﹣;(2)把t2+99t+29=0變形為29?()2+99?+2=0,實數(shù)s和可看作方程29x2+99x+2=0的兩根,∴s+=﹣,s?=,∴=s+4?+=﹣+4×=﹣.【點睛】本題考查了根與系數(shù)的關(guān)系:若x2,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x2+x2=﹣,x2x2=.也考查了解一元二次方程.24、(1)8;(2);(3)【分析】(1)根據(jù)D等級的人數(shù)除以其百分比得到班級總?cè)藬?shù),再乘以B等級的百分比即可得a的值;(2)用C等級的人數(shù)除以班級總?cè)藬?shù)即可得到其百分比,用360°乘以其百分比得到其扇形圓心角度數(shù);(3)畫樹狀圖可知,共有12種均等可能結(jié)果,恰好選中一男一女的有6種.然后根據(jù)概率公式求解即可【詳解】解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國奶嘴夾市場調(diào)查研究報告
- 2025年中國前防塵蓋市場調(diào)查研究報告
- 廣州廣東廣州海洋地質(zhì)調(diào)查局招聘交流選調(diào)人員筆試歷年參考題庫附帶答案詳解
- 2025至2031年中國脫水提升機行業(yè)投資前景及策略咨詢研究報告
- 2025年測油液位計項目可行性研究報告
- 2025至2031年中國檸檬梅行業(yè)投資前景及策略咨詢研究報告
- 2025年家用迷你型數(shù)字電視機頂盒項目可行性研究報告
- 2025至2031年中國光電纜附件行業(yè)投資前景及策略咨詢研究報告
- 2025年全面雙絲光針織面料項目可行性研究報告
- 2025年不銹鋼不粘鍋項目可行性研究報告
- 多源數(shù)據(jù)整合
- 新人教版高中數(shù)學(xué)必修第二冊第六章平面向量及其應(yīng)用教案 (一)
- 《預(yù)防流感》主題班會教案3篇
- 校園招聘活動策劃方案(6篇)
- 期末 (試題) -2024-2025學(xué)年教科版(廣州)英語四年級上冊
- 解讀國有企業(yè)管理人員處分條例課件
- 湖南省長沙市一中2024-2025學(xué)年高一生物上學(xué)期期末考試試題含解析
- 小孩使用手機協(xié)議書范本
- 榆神礦區(qū)郭家灘煤礦(700 萬噸-年)項目環(huán)評
- 2024年200MW-400MWh電化學(xué)儲能電站設(shè)計方案
- 余土外運施工方案
評論
0/150
提交評論