三年(2022–2024)高考數學真題分類匯編(全國)專題12 概率與統計(理)(原卷版)_第1頁
三年(2022–2024)高考數學真題分類匯編(全國)專題12 概率與統計(理)(原卷版)_第2頁
三年(2022–2024)高考數學真題分類匯編(全國)專題12 概率與統計(理)(原卷版)_第3頁
三年(2022–2024)高考數學真題分類匯編(全國)專題12 概率與統計(理)(原卷版)_第4頁
三年(2022–2024)高考數學真題分類匯編(全國)專題12 概率與統計(理)(原卷版)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題12概率與統計(理)考點三年考情(2022-2024)命題趨勢考點1:獨立性檢驗與回歸分析2024年上海夏季高考數學真題2024年高考全國甲卷數學(理)真題2022年高考全國乙卷數學(理)真題2022年高考全國甲卷數學(文)真題2023年天津高考數學真題2024年上海夏季高考數學真題2024年天津高考數學真題從近三年的高考卷的考查情況來看,本節(jié)是高考的熱點,特別是解答題中,更是經常出現.隨著計算機技術和人工智能的發(fā)展,概率統計逐步成為應用最廣泛的數學內容之一.這部分內容作為高考數學的主干內容之一,會越來越受到重視.主要以應用題的方式出現,多與經濟、生活實際相聯系,需要在復雜的題目描述中找出數量關系,建立數學模型,并且運用數學模型解決實際問題.考點2:條件概率、全概率公式、貝葉斯公式2022年新高考全國I卷數學真題2024年天津高考數學真題2022年新高考全國II卷數學真題2024年上海夏季高考數學真題2022年新高考天津數學高考真題2023年高考全國甲卷數學(理)真題考點3:信息圖表處理2024年新課標全國Ⅱ卷數學真題2022年高考全國甲卷數學(理)真題考點4:頻率分布直方圖2023年新課標全國Ⅱ卷數學真題2022年新高考天津數學高考真題考點5:概率最值問題2024年新課標全國Ⅱ卷數學真題2023年北京高考數學真題2022年新高考北京數學高考真題2022年高考全國乙卷數學(理)真題考點6:古典概型與幾何概型2022年高考全國甲卷數學(理)真題2022年高考全國乙卷數學(理)真題2024年高考全國甲卷數學(文)真題2023年高考全國乙卷數學(理)真題2022年新高考全國I卷數學真題2023年高考全國乙卷數學(文)真題2022年高考全國甲卷數學(文)真題2023年天津高考數學真題2024年高考全國甲卷數學(理)真題2024年新課標全國Ⅰ卷數學真題2024年新課標全國Ⅱ卷數學真題考點7:正態(tài)分布與相互獨立2023年新課標全國Ⅱ卷數學真題2022年新高考全國II卷數學真題2024年新課標全國Ⅰ卷數學真題考點8:平均數、中位數、眾數、方差、標準差、極差2023年高考全國乙卷數學(理)真題2023年新課標全國Ⅰ卷數學真題考點9:求離散型隨機變量的分布列與期望2024年北京高考數學真題2022年高考全國甲卷數學(理)真題2022年新高考浙江數學高考真題考點10:概率遞推問題與概率綜合問題.2023年新課標全國Ⅰ卷數學真題考點1:獨立性檢驗與回歸分析1.(2024年上海夏季高考數學真題)為了解某地初中學生體育鍛煉時長與學業(yè)成績的關系,從該地區(qū)29000名學生中抽取580人,得到日均體育鍛煉時長與學業(yè)成績的數據如下表所示:時間范圍學業(yè)成績優(yōu)秀5444231不優(yōu)秀1341471374027(1)該地區(qū)29000名學生中體育鍛煉時長不少于1小時人數約為多少?(2)估計該地區(qū)初中學生日均體育鍛煉的時長(精確到0.1)(3)是否有的把握認為學業(yè)成績優(yōu)秀與日均體育鍛煉時長不小于1小時且小于2小時有關?(附:其中,.)2.(2024年高考全國甲卷數學(理)真題)某工廠進行生產線智能化升級改造,升級改造后,從該工廠甲、乙兩個車間的產品中隨機抽取150件進行檢驗,數據如下:優(yōu)級品合格品不合格品總計甲車間2624050乙車間70282100總計96522150(1)填寫如下列聯表:優(yōu)級品非優(yōu)級品甲車間乙車間能否有的把握認為甲、乙兩車間產品的優(yōu)級品率存在差異?能否有的把握認為甲,乙兩車間產品的優(yōu)級品率存在差異?(2)已知升級改造前該工廠產品的優(yōu)級品率,設為升級改造后抽取的n件產品的優(yōu)級品率.如果,則認為該工廠產品的優(yōu)級品率提高了,根據抽取的150件產品的數據,能否認為生產線智能化升級改造后,該工廠產品的優(yōu)級品率提高了?()附:0.0500.0100.001k3.8416.63510.8283.(2022年高考全國乙卷數學(理)真題)某地經過多年的環(huán)境治理,已將荒山改造成了綠水青山.為估計一林區(qū)某種樹木的總材積量,隨機選取了10棵這種樹木,測量每棵樹的根部橫截面積(單位:)和材積量(單位:),得到如下數據:樣本號i12345678910總和根部橫截面積0.040.060.040.080.080.050.050.070.070.060.6材積量0.250.400.220.540.510.340.360.460.420.403.9并計算得.(1)估計該林區(qū)這種樹木平均一棵的根部橫截面積與平均一棵的材積量;(2)求該林區(qū)這種樹木的根部橫截面積與材積量的樣本相關系數(精確到0.01);(3)現測量了該林區(qū)所有這種樹木的根部橫截面積,并得到所有這種樹木的根部橫截面積總和為.已知樹木的材積量與其根部橫截面積近似成正比.利用以上數據給出該林區(qū)這種樹木的總材積量的估計值.附:相關系數.4.(2022年高考全國甲卷數學(文)真題)甲、乙兩城之間的長途客車均由A和B兩家公司運營,為了解這兩家公司長途客車的運行情況,隨機調查了甲、乙兩城之間的500個班次,得到下面列聯表:準點班次數未準點班次數A24020B21030(1)根據上表,分別估計這兩家公司甲、乙兩城之間的長途客車準點的概率;(2)能否有90%的把握認為甲、乙兩城之間的長途客車是否準點與客車所屬公司有關?附:,0.1000.0500.0102.7063.8416.6355.(2023年天津高考數學真題)鳶是鷹科的一種鳥,《詩經·大雅·旱麓》曰:“鳶飛戾天,魚躍余淵”.鳶尾花因花瓣形如鳶尾而得名,寓意鵬程萬里、前途無量.通過隨機抽樣,收集了若干朵某品種鳶尾花的花萼長度和花瓣長度(單位:cm),繪制散點圖如圖所示,計算得樣本相關系數為,利用最小二乘法求得相應的經驗回歸方程為,根據以上信息,如下判斷正確的為(

)A.花瓣長度和花萼長度不存在相關關系B.花瓣長度和花萼長度負相關C.花萼長度為7cm的該品種鳶尾花的花瓣長度的平均值為D.若從樣本中抽取一部分,則這部分的相關系數一定是6.(2024年上海夏季高考數學真題)已知氣候溫度和海水表層溫度相關,且相關系數為正數,對此描述正確的是(

)A.氣候溫度高,海水表層溫度就高B.氣候溫度高,海水表層溫度就低C.隨著氣候溫度由低到高,海水表層溫度呈上升趨勢D.隨著氣候溫度由低到高,海水表層溫度呈下降趨勢7.(2024年天津高考數學真題)下列圖中,線性相關性系數最大的是(

)A. B.C. D.考點2:條件概率、全概率公式、貝葉斯公式8.(2022年新高考全國I卷數學真題)一醫(yī)療團隊為研究某地的一種地方性疾病與當地居民的衛(wèi)生習慣(衛(wèi)生習慣分為良好和不夠良好兩類)的關系,在已患該疾病的病例中隨機調查了100例(稱為病例組),同時在未患該疾病的人群中隨機調查了100人(稱為對照組),得到如下數據:不夠良好良好病例組4060對照組1090(1)能否有99%的把握認為患該疾病群體與未患該疾病群體的衛(wèi)生習慣有差異?(2)從該地的人群中任選一人,A表示事件“選到的人衛(wèi)生習慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛(wèi)生習慣不夠良好對患該疾病風險程度的一項度量指標,記該指標為R.(ⅰ)證明:;(ⅱ)利用該調查數據,給出的估計值,并利用(?。┑慕Y果給出R的估計值.附,0.0500.0100.001k3.8416.63510.8289.(2024年天津高考數學真題)五種活動,甲、乙都要選擇三個活動參加.甲選到的概率為;已知乙選了活動,他再選擇活動的概率為.10.(2022年新高考全國II卷數學真題)在某地區(qū)進行流行病學調查,隨機調查了100位某種疾病患者的年齡,得到如下的樣本數據的頻率分布直方圖:

(1)估計該地區(qū)這種疾病患者的平均年齡(同一組中的數據用該組區(qū)間的中點值為代表);(2)估計該地區(qū)一位這種疾病患者的年齡位于區(qū)間的概率;(3)已知該地區(qū)這種疾病的患病率為,該地區(qū)年齡位于區(qū)間的人口占該地區(qū)總人口的.從該地區(qū)中任選一人,若此人的年齡位于區(qū)間,求此人患這種疾病的概率.(以樣本數據中患者的年齡位于各區(qū)間的頻率作為患者的年齡位于該區(qū)間的概率,精確到0.0001).11.(2024年上海夏季高考數學真題)某校舉辦科學競技比賽,有3種題庫,題庫有5000道題,題庫有4000道題,題庫有3000道題.小申已完成所有題,他題庫的正確率是0.92,題庫的正確率是0.86,題庫的正確率是0.72.現他從所有的題中隨機選一題,正確率是.12.(2022年新高考天津數學高考真題)52張撲克牌,沒有大小王,無放回地抽取兩次,則兩次都抽到A的概率為;已知第一次抽到的是A,則第二次抽取A的概率為13.(2023年高考全國甲卷數學(理)真題)某地的中學生中有的同學愛好滑冰,的同學愛好滑雪,的同學愛好滑冰或愛好滑雪.在該地的中學生中隨機調查一位同學,若該同學愛好滑雪,則該同學也愛好滑冰的概率為(

)A.0.8 B.0.6 C.0.5 D.0.4考點3:信息圖表處理14.(2024年新課標全國Ⅱ卷數學真題)某農業(yè)研究部門在面積相等的100塊稻田上種植一種新型水稻,得到各塊稻田的畝產量(單位:kg)并整理如下表畝產量[900,950)[950,1000)[1000,1050)[1050,1100)[1100,1150)[1150,1200)頻數61218302410根據表中數據,下列結論中正確的是(

)A.100塊稻田畝產量的中位數小于1050kgB.100塊稻田中畝產量低于1100kg的稻田所占比例超過80%C.100塊稻田畝產量的極差介于200kg至300kg之間D.100塊稻田畝產量的平均值介于900kg至1000kg之間15.(2022年高考全國甲卷數學(理)真題)某社區(qū)通過公益講座以普及社區(qū)居民的垃圾分類知識.為了解講座效果,隨機抽取10位社區(qū)居民,讓他們在講座前和講座后各回答一份垃圾分類知識問卷,這10位社區(qū)居民在講座前和講座后問卷答題的正確率如下圖:則(

)A.講座前問卷答題的正確率的中位數小于B.講座后問卷答題的正確率的平均數大于C.講座前問卷答題的正確率的標準差小于講座后正確率的標準差D.講座后問卷答題的正確率的極差大于講座前正確率的極差考點4:頻率分布直方圖16.(2023年新課標全國Ⅱ卷數學真題)某研究小組經過研究發(fā)現某種疾病的患病者與未患病者的某項醫(yī)學指標有明顯差異,經過大量調查,得到如下的患病者和未患病者該指標的頻率分布直方圖:

利用該指標制定一個檢測標準,需要確定臨界值c,將該指標大于c的人判定為陽性,小于或等于c的人判定為陰性.此檢測標準的漏診率是將患病者判定為陰性的概率,記為;誤診率是將未患病者判定為陽性的概率,記為.假設數據在組內均勻分布,以事件發(fā)生的頻率作為相應事件發(fā)生的概率.(1)當漏診率%時,求臨界值c和誤診率;(2)設函數,當時,求的解析式,并求在區(qū)間的最小值.17.(2022年新高考天津數學高考真題)為研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數據(單位:)的分組區(qū)間為,將其按從左到右的順序分別編號為第一組,第二組,…,第五組,右圖是根據試驗數據制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數為(

)A.8 B.12 C.16 D.18考點5:概率最值問題18.(2024年新課標全國Ⅱ卷數學真題)某投籃比賽分為兩個階段,每個參賽隊由兩名隊員組成,比賽具體規(guī)則如下:第一階段由參賽隊中一名隊員投籃3次,若3次都未投中,則該隊被淘汰,比賽成績?yōu)?分;若至少投中一次,則該隊進入第二階段.第二階段由該隊的另一名隊員投籃3次,每次投籃投中得5分,未投中得0分.該隊的比賽成績?yōu)榈诙A段的得分總和.某參賽隊由甲、乙兩名隊員組成,設甲每次投中的概率為p,乙每次投中的概率為q,各次投中與否相互獨立.(1)若,,甲參加第一階段比賽,求甲、乙所在隊的比賽成績不少于5分的概率.(2)假設,(i)為使得甲、乙所在隊的比賽成績?yōu)?5分的概率最大,應該由誰參加第一階段比賽?(ii)為使得甲、乙所在隊的比賽成績的數學期望最大,應該由誰參加第一階段比賽?19.(2023年北京高考數學真題)為研究某種農產品價格變化的規(guī)律,收集得到了該農產品連續(xù)40天的價格變化數據,如下表所示.在描述價格變化時,用“+”表示“上漲”,即當天價格比前一天價格高;用“-”表示“下跌”,即當天價格比前一天價格低;用“0”表示“不變”,即當天價格與前一天價格相同.時段價格變化第1天到第20天-++0---++0+0--+-+00+第21天到第40天0++0---++0+0+---+0-+用頻率估計概率.(1)試估計該農產品價格“上漲”的概率;(2)假設該農產品每天的價格變化是相互獨立的.在未來的日子里任取4天,試估計該農產品價格在這4天中2天“上漲”、1天“下跌”、1天“不變”的概率;(3)假設該農產品每天的價格變化只受前一天價格變化的影響.判斷第41天該農產品價格“上漲”“下跌”和“不變”的概率估計值哪個最大.(結論不要求證明)20.(2022年新高考北京數學高考真題)在校運動會上,只有甲、乙、丙三名同學參加鉛球比賽,比賽成績達到以上(含)的同學將獲得優(yōu)秀獎.為預測獲得優(yōu)秀獎的人數及冠軍得主,收集了甲、乙、丙以往的比賽成績,并整理得到如下數據(單位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假設用頻率估計概率,且甲、乙、丙的比賽成績相互獨立.(1)估計甲在校運動會鉛球比賽中獲得優(yōu)秀獎的概率;(2)設X是甲、乙、丙在校運動會鉛球比賽中獲得優(yōu)秀獎的總人數,估計X的數學期望E(X);(3)在校運動會鉛球比賽中,甲、乙、丙誰獲得冠軍的概率估計值最大?(結論不要求證明)21.(2022年高考全國乙卷數學(理)真題)某棋手與甲、乙、丙三位棋手各比賽一盤,各盤比賽結果相互獨立.已知該棋手與甲、乙、丙比賽獲勝的概率分別為,且.記該棋手連勝兩盤的概率為p,則(

)A.p與該棋手和甲、乙、丙的比賽次序無關 B.該棋手在第二盤與甲比賽,p最大C.該棋手在第二盤與乙比賽,p最大 D.該棋手在第二盤與丙比賽,p最大考點6:古典概型與幾何概型22.(2022年高考全國甲卷數學(理)真題)從正方體的8個頂點中任選4個,則這4個點在同一個平面的概率為.23.(2022年高考全國乙卷數學(理)真題)從甲、乙等5名同學中隨機選3名參加社區(qū)服務工作,則甲、乙都入選的概率為.24.(2024年高考全國甲卷數學(文)真題)甲、乙、丙、丁四人排成一列,則丙不在排頭,且甲或乙在排尾的概率是(

)A. B. C. D.25.(2023年高考全國乙卷數學(理)真題)設O為平面坐標系的坐標原點,在區(qū)域內隨機取一點,記該點為A,則直線OA的傾斜角不大于的概率為(

)A. B. C. D.26.(2022年新高考全國I卷數學真題)從2至8的7個整數中隨機取2個不同的數,則這2個數互質的概率為(

)A. B. C. D.27.(2023年高考全國乙卷數學(文)真題)某學校舉辦作文比賽,共6個主題,每位參賽同學從中隨機抽取一個主題準備作文,則甲、乙兩位參賽同學抽到不同主題概率為(

)A. B. C. D.28.(2022年高考全國甲卷數學(文)真題)從分別寫有1,2,3,4,5,6的6張卡片中無放回隨機抽取2張,則抽到的2張卡片上的數字之積是4的倍數的概率為(

)A. B. C. D.29.(2023年天津高考數學真題)把若干個黑球和白球(這些球除顏色外無其它差異)放進三個空箱子中,三個箱子中的球數之比為.且其中的黑球比例依次為.若從每個箱子中各隨機摸出一球,則三個球都是黑球的概率為;若把所有球放在一起,隨機摸出一球,則該球是白球的概率為.30.(2024年高考全國甲卷數學(理)真題)有6個相同的球,分別標有數字1、2、3、4、5、6,從中無放回地隨機取3次,每次取1個球.記為前兩次取出的球上數字的平均值,為取出的三個球上數字的平均值,則與之差的絕對值不大于的概率為.31.(2024年新課標全國Ⅰ卷數學真題)甲、乙兩人各有四張卡片,每張卡片上標有一個數字,甲的卡片上分別標有數字1,3,5,7,乙的卡片上分別標有數字2,4,6,8,兩人進行四輪比賽,在每輪比賽中,兩人各自從自己持有的卡片中隨機選一張,并比較所選卡片上數字的大小,數字大的人得1分,數字小的人得0分,然后各自棄置此輪所選的卡片(棄置的卡片在此后的輪次中不能使用).則四輪比賽后,甲的總得分不小于2的概率為.32.(2024年新課標全國Ⅱ卷數學真題)在如圖的4×4的方格表中選4個方格,要求每行和每列均恰有一個方格被選中,則共有種選法,在所有符合上述要求的選法中,選中方格中的4個數之和的最大值是.考點7:正態(tài)分布與相互獨立33.(多選題)(2023年新課標全國Ⅱ卷數學真題)在信道內傳輸0,1信號,信號的傳輸相互獨立.發(fā)送0時,收到1的概率為,收到0的概率為;發(fā)送1時,收到0的概率為,收到1的概率為.考慮兩種傳輸方案:單次傳輸和三次傳輸.單次傳輸是指每個信號只發(fā)送1次,三次傳輸是指每個信號重復發(fā)送3次.收到的信號需要譯碼,譯碼規(guī)則如下:單次傳輸時,收到的信號即為譯碼;三次傳輸時,收到的信號中出現次數多的即為譯碼(例如,若依次收到1,0,1,則譯碼為1).A.采用單次傳輸方案,若依次發(fā)送1,0,1,則依次收到l,0,1的概率為B.采用三次傳輸方案,若發(fā)送1,則依次收到1,0,1的概率為C.采用三次傳輸方案,若發(fā)送1,則譯碼為1的概率為D.當時,若發(fā)送0,則采用三次傳輸方案譯碼為0的概率大于采用單次傳輸方案譯碼為0的概率34.(2022年新高考全國II卷數學真題)已知隨機變量X服從正態(tài)分布,且,則.35.(多選題)(2024年新課標全國Ⅰ卷數學真題)隨著“一帶一路”國際合作的深入,某茶葉種植區(qū)多措并舉推動茶葉出口.為了解推動出口后的畝收入(單位:萬元)情況,從該種植區(qū)抽取樣本,得到推動出口后畝收入的樣本均值,樣本方差,已知該種植區(qū)以往的畝收入服從正態(tài)分布,假設推動出口后的畝收入服從正態(tài)分布,則(

)(若隨機變量Z服從正態(tài)分布,)A. B.C. D.考點8:平均數、中位數、眾數、方差、標準差、極差36.(2023年高考全國乙卷數學(理)真題)某廠為比較甲乙兩種工藝對橡膠產品伸縮率的處理效應,進行10次配對試驗,每次配對試驗選用材質相同的兩個橡膠產品,隨機地選其中一個用甲工藝處理,另一個用乙工藝處理,測量處理后的橡膠產品的伸縮率.甲、乙兩種工藝處理后的橡膠產品的伸縮率分別記為,.試驗結果如下:試驗序號12345678910伸縮率545533551522575544541568596548伸縮率536527543530560533522550576536記,記的樣本平均數為,樣本方差為.(1)求,;(2)判斷甲工藝處理后的橡膠產品的伸縮率較乙工藝處理后的橡膠產品的伸縮率是否有顯著提高(如果,則認為甲工藝處理后的橡膠產品的伸縮率較乙工藝處理后的橡膠產品的伸縮率有顯著提高,否則不認為有顯著提高)37.(多選題)(2023年新課標全國Ⅰ卷數學真題)有一組樣本數據,其中是最小值,是最大值,則(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論