廣東省東莞市(莞外、松山湖實驗)2022年數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
廣東省東莞市(莞外、松山湖實驗)2022年數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
廣東省東莞市(莞外、松山湖實驗)2022年數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
廣東省東莞市(莞外、松山湖實驗)2022年數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
廣東省東莞市(莞外、松山湖實驗)2022年數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;③a﹣b+c≥0;④的最小值為1.其中,正確結(jié)論的個數(shù)為()A.1個 B.2個 C.1個 D.4個2.在Rt△ABC中,∠C=90°.若AC=2BC,則sinA的值是()A. B. C. D.23.下列命題中,①直徑是圓中最長的弦;②長度相等的兩條弧是等弧;③半徑相等的兩個圓是等圓;④半徑不是弧,半圓包括它所對的直徑,其中正確的個數(shù)是()A. B. C. D.4.如圖,點在以為直徑的內(nèi),且,以點為圓心,長為半徑作弧,得到扇形,且,.若在這個圓面上隨意拋飛鏢,則飛鏢落在扇形內(nèi)的概率是()A. B. C. D.5.在直角梯形ABCD中,AD//BC,∠B=90o,E為AB上一點,且ED平分∠ADC,EC平分∠BCD,則下列結(jié)論:①DE⊥EC;②點E是AB的中點;③AD?BC=BE?DE;④CD=AD+BC.其中正確的有()A.①②③ B.②③④ C.①②④ D.①③④6.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.7.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦?,需要添加的條件是(

)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD8.如圖,在菱形中,,,是的中點,將繞點逆時針旋轉(zhuǎn)至點與點重合,此時點旋轉(zhuǎn)至處,則點在旋轉(zhuǎn)過程中形成的、線段、點在旋轉(zhuǎn)過程中形成的與線段所圍成的陰影部分的面積為()A. B. C. D.9.某種藥品原價為36元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設(shè)平均每次降價的百分率為x,根據(jù)題意所列方程正確的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=2510.下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是()A.B.C.D.二、填空題(每小題3分,共24分)11.2018年10月21日,重慶市第八屆中小學(xué)藝術(shù)工作坊在渝北區(qū)空港新城小學(xué)體育館開幕,來自全重慶市各個區(qū)縣共二十多個工作坊集中展示了自己的藝術(shù)特色.組委會準(zhǔn)備為現(xiàn)場展示的參賽選手購買三種紀(jì)念品,其中甲紀(jì)念品5元/件,乙紀(jì)念品7元/件,丙紀(jì)念品10元/件.要求購買乙紀(jì)念品數(shù)量是丙紀(jì)念品數(shù)量的2倍,總費用為346元.若使購買的紀(jì)念品總數(shù)最多,則應(yīng)購買紀(jì)念品共_____件.12.在平面直角坐標(biāo)系xoy中,直線(k為常數(shù))與拋物線交于A,B兩點,且A點在軸右側(cè),P點的坐標(biāo)為(0,4)連接PA,PB.(1)△PAB的面積的最小值為____;(2)當(dāng)時,=_______13.圓錐的側(cè)面展開圖的圓心角是120°,其底面圓的半徑為2cm,則其側(cè)面積為_____.14.三角形的三條邊分別為5,5,6,則該三角形的內(nèi)切圓半徑為__________15.計算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.16.在一個不透明的口袋中,裝有一些除顏色外完全相同的紅、白、黑三種顏色的小球.己知袋中有紅球5個,白球23個,且從袋中隨機(jī)摸出一個紅球的概率是,則袋中黑球的個數(shù)為__________.17.如圖,在中,是斜邊的垂直平分線,分別交于點,若,則______.18.某品牌手機(jī)六月份銷售400萬部,七月份、八月份銷售量連續(xù)增長,八月份銷售量達(dá)到576萬部,則該品牌手機(jī)這兩個月銷售量的月平均增長率為_________.三、解答題(共66分)19.(10分)已知關(guān)于x的方程x2﹣(m+2)x+2m=1.(1)若該方程的一個根為x=1,求m的值;(2)求證:不論m取何實數(shù),該方程總有兩個實數(shù)根.20.(6分)伴隨經(jīng)濟(jì)發(fā)展和生活水平的日益提高,水果超市如雨后春筍般興起.萬松園一水果超市從外地購進(jìn)一種水果,其進(jìn)貨成本是每噸0.4萬元,根據(jù)市場調(diào)查,這種水果在市場上的銷售量y(噸)與銷售價x(萬元)之間的函數(shù)關(guān)系為y=-x+2.6(1)當(dāng)每噸銷售價為多少萬元時,銷售利潤為0.96萬元?(2)當(dāng)每噸銷售價為多少萬元時利潤最大?并求出最大利潤是多少?21.(6分)如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△ADE,點B經(jīng)過的路線為弧BD求圖中陰影部分的面積.22.(8分)某大學(xué)生利用暑假40天社會實踐參與了一家網(wǎng)店經(jīng)營,了解到一種成本為20元/件的新型商品在第x天銷售的相關(guān)信息如下表所示.銷售量p(件)

P=50—x

銷售單價q(元/件)

當(dāng)1≤x≤20時,

當(dāng)21≤x≤40時,

(1)請計算第幾天該商品的銷售單價為35元/件?(2)求該網(wǎng)店第x天獲得的利潤y關(guān)于x的函數(shù)關(guān)系式.(3)這40天中該網(wǎng)店第幾天獲得的利潤最大?最大利潤是多少?23.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形,若能,求出BE的長;若不能,請說明理由;(3)求當(dāng)線段AM最短時的長度24.(8分)如圖,△ABC與△A′B′C′是以點O為位似中心的位似圖形,它們的頂點都在正方形網(wǎng)格的格點上.(1)畫出位似中心O;(2)△ABC與△A′B′C′的相似比為__________,面積比為__________.25.(10分)在一次籃球拓展課上,,,三人玩籃球傳球游戲,游戲規(guī)則是:每一次傳球由三人中的一位將球隨機(jī)地傳給另外兩人中的某一人.例如:第一次由傳球,則將球隨機(jī)地傳給,兩人中的某一人.(1)若第一次由傳球,求兩次傳球后,球恰好回到手中的概率.(要求用畫樹狀圖法或列表法)(2)從,,三人中隨機(jī)選擇一人開始進(jìn)行傳球,求兩次傳球后,球恰好在手中的概率.(要求用畫樹狀圖法或列表法)26.(10分)如圖,已知△ABC的頂點A、B、C的坐標(biāo)分別是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)畫出△ABC關(guān)于原點O中心對稱的圖形△A1B1C1;(2)將△ABC繞點A按順時針方向旋轉(zhuǎn)90°后得到△AB2C2,畫出△AB2C2并求線段AB掃過的面積.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】本題考察二次函數(shù)的基本性質(zhì),一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側(cè),故①正確;∵拋物線與軸最多有一個交點,∴∴關(guān)于的方程中∴關(guān)于的方程無實數(shù)根,故②正確;∵拋物線與軸最多有一個交點,∴當(dāng)時,≥0正確,故③正確;當(dāng)時,,故④正確.故選D.【點睛】本題的解題關(guān)鍵是熟悉函數(shù)的系數(shù)之間的關(guān)系,二次函數(shù)和一元二次方程的關(guān)系,難點是第四問的證明,要考慮到不等式的轉(zhuǎn)化.2、C【分析】設(shè)BC=x,可得AC=2x,Rt△ABC中利用勾股定理算出AB=x,然后利用三角函數(shù)在直角三角形中的定義,可算出sinA的值.【詳解】解:由AC=2BC,設(shè)BC=x,則AC=2x,

∵Rt△ABC中,∠C=90°,

∴根據(jù)勾股定理,得AB=.

因此,sinA=.

故選:C.【點睛】本題已知直角三角形的兩條直角邊的關(guān)系,求角A的正弦之值.著重考查了勾股定理、三角函數(shù)的定義等知識,屬于基礎(chǔ)題.3、C【分析】根據(jù)弦、弧、等弧的定義即可求解.【詳解】解:①直徑是圓中最長的弦,真命題;

②在等圓或同圓中,長度相等的兩條弧是等弧,假命題;

③半徑相等的兩個圓是等圓,真命題;④半徑是圓心與圓上一點之間的線段,不是弧,半圓包括它所對的直徑,真命題.

故選:C.【點睛】本題考查了圓的認(rèn)識:掌握與圓有關(guān)的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).4、C【分析】如圖,連接AO,∠BAC=120,根據(jù)等腰三角形的性質(zhì)得到AO⊥BC,∠BAO=60,解直角三角形得到AB=,由扇形的面積公式得到扇形ABC的面積=,根據(jù)概率公式即可得到結(jié)論.【詳解】如圖,連接AO,∠BAC=120,∵AB=AC,BO=CO,∴AO⊥BC,∠BAO=60,∵BC=2,∴BO=1,∴AB=BO÷cos30°=,∴扇形ABC的面積=,∵⊙O的面積=,∴飛鏢落在扇形ABC內(nèi)的概率是=,故選:C.【點睛】本題考查了幾何概率,扇形的面積的計算,等腰三角形的性質(zhì),解直角三角形的運用,正確的識別圖形是解題的關(guān)鍵.5、C【解析】如圖(見解析),過點E作,根據(jù)平行線的性質(zhì)、角平分線的性質(zhì)、相似三角形的判定定理與性質(zhì)逐個判斷即可.【詳解】如圖,過點E作,即ED平分,EC平分,即,故①正確又ED平分,EC平分,點E是AB的中點,故②正確在和中,同理可證:,故④正確又,即在中,,故③錯誤綜上,正確的有①②④故選:C.【點睛】本題考查了平行線的性質(zhì)、角平分線的性質(zhì)、相似三角形的判定定理與性質(zhì),通過作輔助線,構(gòu)造垂線和兩組全等的三角形是解題關(guān)鍵.6、C【分析】作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).7、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,

∵四邊形ABCD的對角線互相平分,

∴四邊形ABCD是平行四邊形,

∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,

∴四邊形ABCD是矩形,

故選D.【點睛】考查了矩形的判定,關(guān)鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.8、C【分析】根據(jù)菱形的性質(zhì)可得AD=AB=4,∠DAB=180°-,AE=,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根據(jù)S陰影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出陰影部分的面積.【詳解】解:∵在菱形中,,,是的中點,∴AD=AB=4,∠DAB=180°-,AE=,∵繞點逆時針旋轉(zhuǎn)至點與點重合,此時點旋轉(zhuǎn)至處,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S陰影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故選:C.【點睛】此題考查的是菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和扇形的面積公式,掌握菱形的性質(zhì)定理、旋轉(zhuǎn)的性質(zhì)和扇形的面積公式是解決此題的關(guān)鍵.9、C【分析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應(yīng)數(shù)值代入即可求解.【詳解】解:第一次降價后的價格為36×(1﹣x),兩次連續(xù)降價后售價在第一次降價后的價格的基礎(chǔ)上降低x,為36×(1﹣x)×(1﹣x),則列出的方程是36×(1﹣x)2=1.故選:C.【點睛】考查由實際問題抽象出一元二次方程中求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.10、B【解析】根據(jù)勾股定理,AB==2,BC==,AC==,所以△ABC的三邊之比為:2:=1:2:,A、三角形的三邊分別為2,=,=3,三邊之比為2::3=::3,故本選項錯誤;B、三角形的三邊分別為2,4,=2,三邊之比為2:4:2=1:2:,故本選項正確;C、三角形的三邊分別為2,3,=,三邊之比為2:3:,故本選項錯誤;D、三角形的三邊分別為=,=,4,三邊之比為::4,故本選項錯誤.故選B.二、填空題(每小題3分,共24分)11、2【分析】設(shè)購買甲紀(jì)念品x件,丙紀(jì)念品y件,則購進(jìn)乙紀(jì)念品2y件,根據(jù)總價=單價×數(shù)量,即可得出關(guān)于x,y的二元一次方程,結(jié)合x,y均為非負(fù)整數(shù),即可求出x,y的值,進(jìn)而可得出(x+y+2y)的值,取其最大值即可得出答案.【詳解】設(shè)購買甲紀(jì)念品x件,丙紀(jì)念品y件,則購進(jìn)乙紀(jì)念品2y件,依題意,得:5x+7×2y+10y=346,∴x=,∵x,y均為非負(fù)整數(shù),∴346﹣24y為5的整數(shù)倍,∴y的尾數(shù)為4或9,∴,,,∴x+y+2y=2或53或1.∵2>53>1,∴最多可以購買2件紀(jì)念品.故答案為:2.【點睛】本題主要考查二元一次方程的實際應(yīng)用,根據(jù)題意,求出x,y的非負(fù)整數(shù)解,是解題的關(guān)鍵.12、16【分析】(1)設(shè)A(m,km),B(n,kn),聯(lián)立解析式,利用根與系數(shù)的關(guān)系建立之間的關(guān)系,列出面積函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求解最小值即可;(2)先證明平分得到,把轉(zhuǎn)化為,利用兩點間的距離公式再次轉(zhuǎn)化,從而可得答案.【詳解】解:(1)如圖,設(shè)A(m,km),B(n,kn),其中m1,n1.得:即,∴∴當(dāng)k=1時,△PAB面積有最小值,最小值為故答案為.(2)設(shè)設(shè)A(m,km),B(n,kn),其中m1,n1.得:即,∴設(shè)直線PA的解析式為y=ax+b,將P(1,4),A(m,km)代入得:,解得:,∴令y=1,得∴直線PA與x軸的交點坐標(biāo)為.同理可得,直線PB的解析式為直線PB與x軸交點坐標(biāo)為.∵∴直線PA、PB與x軸的交點關(guān)于y軸對稱,即直線PA、PB關(guān)于y軸對稱.平分,到的距離相等,而∴,過作軸于,過作軸于,則∴∴∵∴∴∴故答案為:【點睛】本題是代數(shù)幾何綜合題,難度很大.考查了二次函數(shù)與一次函數(shù)的基本性質(zhì),一元二次方程的根與系數(shù)的關(guān)系.相似三角形的判定與性質(zhì),角平分線的判定與性質(zhì),解答中首先得到基本結(jié)論,即PA、PB的對稱性,正確解決本題的關(guān)鍵是打好數(shù)學(xué)基礎(chǔ),將平時所學(xué)知識融會貫通、靈活運用.13、12πcm【分析】先根據(jù)底面半徑求出底面周長,即為扇形的弧長,再設(shè)出扇形的半徑,根據(jù)扇形的弧長公式,確定扇形的半徑;最后用扇形的面積公式求解即可.【詳解】解:∵底面圓的半徑為2cm,∴底面周長為4πcm,∴側(cè)面展開扇形的弧長為4πcm,設(shè)扇形的半徑為r,∵圓錐的側(cè)面展開圖的圓心角是120°,∴=4π,解得:r=6,∴側(cè)面積為×4π×6=12πcm,故答案為:12πcm.【點睛】本題考查了圓錐的表面積、扇形的面積以及弧長公式,解答的關(guān)鍵在于對基礎(chǔ)知識的牢固掌握和靈活運用.14、1.5【分析】由等腰三角形的性質(zhì)和勾股定理,求出CE的長度,然后利用面積相等列出等式,即可求出內(nèi)切圓的半徑.【詳解】解:如圖,點O為△ABC的內(nèi)心,設(shè)OD=OE=OF=r,∵AC=BC=5,CE平分∠ACB,∴CE⊥AB,AE=BE=,在Rt△ACE中,由勾股定理,得,由三角形的面積相等,則,∴,∴,∴;故答案為:1.5;【點睛】本題考查的是三角形的內(nèi)切圓與內(nèi)心,三線合一定理,勾股定理,掌握三角形的面積公式進(jìn)行計算是解題的關(guān)鍵.15、1【分析】直接利用零指數(shù)冪的性質(zhì)以及負(fù)整數(shù)指數(shù)冪的性質(zhì)分別化簡,得出答案.【詳解】原式=1+1﹣1=1.故答案為:1.【點睛】本題主要考查零指數(shù)冪的性質(zhì)以及負(fù)整數(shù)指數(shù)冪的性質(zhì),牢記負(fù)整數(shù)指數(shù)冪的計算方法,是解題的關(guān)鍵.16、1【分析】袋中黑球的個數(shù)為,利用概率公式得到,然后利用比例性質(zhì)求出即可.【詳解】解:設(shè)袋中黑球的個數(shù)為,根據(jù)題意得,解得,即袋中黑球的個數(shù)為個.故答案為:1.【點睛】本題主要考查概率的計算問題,關(guān)鍵在于根據(jù)題意對概率公式的應(yīng)用.17、2【分析】連接BF,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AF=BF,再根據(jù)等邊對等角的性質(zhì)求出∠ABF=∠A,然后根據(jù)三角形的內(nèi)角和定理求出∠CBF,再根據(jù)三角函數(shù)的定義即可求出CF.【詳解】如圖,連接BF,

∵EF是AB的垂直平分線,

∴AF=BF,

∴,,在△BCF中,∴,∴.故答案為:.【點睛】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角函數(shù)的定義,熟記性質(zhì)并作出輔助線是解題的關(guān)鍵.18、20%【分析】根據(jù)增長(降低)率公式可列出式子.【詳解】設(shè)月平均增長率為x.根據(jù)題意可得:.解得:.所以增長率為20%.故答案為:20%.【點睛】本題主要考查了一元二次方程的應(yīng)用,記住增長率公式很重要.三、解答題(共66分)19、(2)2;(2)見解析【分析】(2)將x=2代入方程中即可求出答案.(2)根據(jù)根的判別式即可求出答案.【詳解】(2)將x=2代入原方程可得2﹣(m+2)+2m=2,解得:m=2.(2)由題意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥2,不論m取何實數(shù),該方程總有兩個實數(shù)根.【點睛】本題考查了一元二次方程,解答本題的關(guān)鍵是熟練運用根的判別式,本題屬于基礎(chǔ)題型.20、(1)當(dāng)每噸銷售價為1萬元或2萬元時,銷售利潤為

0.96萬元;(2)每噸銷售價為1.5萬元時,銷售利潤最大,最大利潤是1.21萬元.【分析】(1)由銷售量y=-x+2.6,而每噸的利潤為x-0.4,所以w=y(x-0.4);

(2)解出(2)中的函數(shù)是一個二次函數(shù),對于二次函數(shù)取最值可使用配方法.【詳解】解:(1)設(shè)銷售利潤為w萬元,由題意可得:

w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,

令w=0.96,則-x2+3x-1.04=0.96

解得x1=1,x2=2,

答:當(dāng)每噸銷售價為1萬元或2萬元時,銷售利潤為

0.96萬元;

(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,

當(dāng)x=1.5時,w最大=1.21,

∴每噸銷售價為1.5萬元時,銷售利潤最大,最大利潤是1.21萬元.【點睛】本題考查了一元二次方程的應(yīng)用和二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握題中的數(shù)量關(guān)系,列出相應(yīng)方程和函數(shù)表達(dá)式.21、π.【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據(jù)扇形面積公式計算即可.【詳解】∵將△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△ADE,∴根據(jù)旋轉(zhuǎn)可知:∠DAB=30°,△AED≌△ACB,∴S△AED=S△ACB,∴圖中陰影部分的面積S=S扇形DAB+S△AED﹣S△ACB=S扇形DABπ.【點睛】本題考查的是扇形面積的計算、旋轉(zhuǎn)的性質(zhì),根據(jù)圖形得到陰影部分的面積=扇形ADB的面積是解題的關(guān)鍵.22、(1)第10天或第31天該商品的銷售單價為31元/件(2)(3)這40天中該網(wǎng)店第21天獲得的利潤最大?最大利潤是721元【分析】(1)分別將q=31代入銷售單價關(guān)于x的函數(shù)關(guān)系式,求出x即可.(2)應(yīng)用利潤=銷售收入-銷售成本列式即可.(3)應(yīng)用二次函數(shù)和反比例函數(shù)的性質(zhì),分別求出最大值比較即得所求.【詳解】解:(1)當(dāng)1≤x≤20時,令,解得;;當(dāng)21≤x≤40時,令,解得;.∴第10天或第31天該商品的銷售單價為31元/件.(2)當(dāng)1≤x≤20時,;當(dāng)21≤x≤40時,.∴y關(guān)于x的函數(shù)關(guān)系式為.(3)當(dāng)1≤x≤20時,,∵,∴當(dāng)x=11時,y有最大值y1,且y1=612.1.當(dāng)21≤x≤40時,∵26210>0,∴隨著x的增大而減小,∴當(dāng)x=21時,有最大值y2,且.∵y1<y2,∴這40天中該網(wǎng)店第21天獲得的利潤最大?最大利潤是721元.23、(1)證明見解析;(2)BE=1或;(3).【解析】試題分析:(1)由AB=AC,根據(jù)等邊對等角,可得∠B=∠C,又由△ABC≌△DEF與三角形外角的性質(zhì),易證得∠CEM=∠BAE,則可證得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分別從AE=EM與AM=EM去分析,注意利用全等三角形與相似三角形的性質(zhì)求解即可求得答案;(3)先設(shè)BE=x,由△ABE∽△ECM,根據(jù)相似三角形的對應(yīng)邊成比例,易得CM=-(x-3)2+,利用二次函數(shù)的性質(zhì),繼而求得線段AM的最小值.試題解析:(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論