2025屆浙江省杭州市上城區(qū)杭州中學數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第1頁
2025屆浙江省杭州市上城區(qū)杭州中學數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第2頁
2025屆浙江省杭州市上城區(qū)杭州中學數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第3頁
2025屆浙江省杭州市上城區(qū)杭州中學數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第4頁
2025屆浙江省杭州市上城區(qū)杭州中學數(shù)學九上期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省杭州市上城區(qū)杭州中學數(shù)學九上期末學業(yè)質量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若點,在拋物線上,則下列結論正確的是()A. B. C. D.2.若兩個相似三角形的周長之比為1∶4,則它們的面積之比為()A.1∶2 B.1∶4 C.1∶8 D.1∶163.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,當y>0時,x的取值范圍是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>24.下列所給的事件中,是必然事件的是()A.一個標準大氣壓下,水加熱到時會沸騰B.買一注福利彩票會中獎C.連續(xù)4次投擲質地均勻的硬幣,4次均硬幣正面朝上D.2020年的春節(jié)小長假辛集將下雪5.如圖,已知,直線與直線相交于點,下列結論錯誤的是()A. B.C. D.6.如圖,將繞點旋轉180°得到,設點的坐標為,則點的坐標為()A. B. C. D.7.某水庫大壩的橫斷面是梯形,壩內一斜坡的坡度,則這個斜坡坡角為()A.30° B.45° C.60° D.90°8.下列事件中,是必然事件的是()A.某射擊運動員射擊一次,命中靶心B.拋一枚硬幣,一定正面朝上C.打開電視機,它正在播放新聞聯(lián)播D.三角形的內角和等于180°9.將拋物線向上平移兩個單位長度,得到的拋物線解析式是()A. B.C. D.10.如圖,在△ABC中,AD⊥BC,垂足為點D,若AC=,∠C=45°,tan∠ABC=3,則BD等于()A.2 B.3 C. D.二、填空題(每小題3分,共24分)11.如圖,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,點A在反比例函數(shù)y=的圖象上,若點B在反比例函數(shù)y=的圖象上,則的k值為_______.12.如圖,量角器的0度刻度線為,將一矩形直尺與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,,量得,點在量角器上的讀數(shù)為,則該直尺的寬度為____________.13.在比例尺為1:1000000的地圖上,量得甲、乙兩地的距離是2.6cm,則甲、乙兩地的實際距離為_______千米.14.如圖是由一些完全相同的小正方體組成的幾何體的主視圖、俯視圖和左視圖,則組成這個幾何體的小正方體的個數(shù)是___________個.15.已知∠A=60°,則tanA=_____.16.將拋物線C1:y=x2﹣4x+1先向左平移3個單位,再向下平移2個單位得到將拋物線C2,則拋物線C2的解析式為:_____.17.如圖,,與相交于點,若,,則的值是_______.18.已知⊙半徑為,點在⊙上,,則線段的最大值為_____.三、解答題(共66分)19.(10分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外無其它差別,其中紅球有個,若從中隨機摸出一個,這個球是白球的概率為.(1)求袋子中白球的個數(shù);(2)隨機摸出一個球后,不放回,再隨機摸出一個球,請結合樹狀圖或列表求兩次都摸到相同顏色的小球的概率.20.(6分)如圖,拋物線y=﹣x2+bx+c與x軸負半軸交于點A,正半軸交于點B,OA=2OB=1.求拋物線的頂點坐標.21.(6分)如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.(1)求證:ΔADM∽ΔBMN;(2)求∠DMN的度數(shù).22.(8分)如圖①,在中,,是邊上任意一點(點與點,不重合),以為一直角邊作,,連接,.若和是等腰直角三角形.(1)猜想線段,之間的數(shù)量關系及所在直線的位置關系,直接寫出結論;(2)現(xiàn)將圖①中的繞著點順時針旋轉,得到圖②,請判斷(1)中的結論是否仍然成立,若成立,請證明;若不成立,請說明理由.23.(8分)如圖,四邊形ABCD內接于⊙O,點E在CB的延長線上,BA平分∠EBD,AE=AB.(1)求證:AC=AD.(2)當,AD=6時,求CD的長.24.(8分)鎮(zhèn)江某特產(chǎn)專賣店銷售某種特產(chǎn),其進價為每千克40元,若按每千克60元出售,則平均每天可售出100千克,后來經(jīng)過市場調查發(fā)現(xiàn),單價每降低1元,平均每天的銷售量增加10千克,若專賣店銷售這種特產(chǎn)想要平均每天獲利2240元,且銷量盡可能大,則每千克特產(chǎn)應定價多少元?25.(10分)如圖,利用尺規(guī),在△ABC的邊AC下方作∠CAE=∠ACB,在射線AE上截取AD=BC,連接CD,并證明:CD=AB.(尺規(guī)作圖要求保留作圖痕跡,不寫作法)26.(10分)已知一次函數(shù)(為常數(shù),)的圖象分別與軸、軸交于、B兩點,且與反比例函數(shù)的圖象交于、D兩點(點在第二象限內,過點作軸于點(1)求的值(2)記為四邊形的面積,為的面積,若,求的值

參考答案一、選擇題(每小題3分,共30分)1、A【分析】將x=0和x=1代入表達式分別求y1,y2,根據(jù)計算結果作比較.【詳解】當x=0時,y1=-1+3=2,當x=1時,y2=-4+3=-1,∴.故選:A.【點睛】本題考查二次函數(shù)圖象性質,對圖象的理解是解答此題的關鍵.2、D【分析】相似三角形的周長比等于相似比,面積比等于相似比的平方.【詳解】∵兩個相似三角形的周長之比為1∶4∴它們的面積之比為1∶16故選D.【點睛】本題考查相似三角形的性質,本題屬于基礎應用題,只需學生熟練掌握相似三角形的性質,即可完成.3、D【分析】根據(jù)已知圖象可以得到圖象與x軸的交點是(-1,0),(2,0),又y>0時,圖象在x軸的上方,由此可以求出x的取值范圍.【詳解】依題意得圖象與x軸的交點是(-1,0),(2,0),當y>0時,圖象在x軸的上方,此時x<-1或x>2,∴x的取值范圍是x<-1或x>2,故選D.【點睛】本題考查了二次函數(shù)與不等式,解答此題的關鍵是求出圖象與x軸的交點,然后由圖象找出當y>0時,自變量x的范圍,注意數(shù)形結合思想的運用.4、A【分析】直接利用時間發(fā)生的可能性判定即可.【詳解】解:A、一個標準大氣壓下,水加熱到100℃時會沸騰,是必然事件;B買一注福利彩票會中獎,是隨機事件;C、連續(xù)4次投擲質地均勻的硬幣,4次均硬幣正面朝上,是隨機事件;D,2020年的春節(jié)小長假辛集將下雪,是隨機事件.故答案為A.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,掌握三類事件的定義以及區(qū)別與聯(lián)系是解答本題的關鍵.5、B【分析】根據(jù)平行線分線段成比例的性質逐一分析即可得出結果.【詳解】解:A、由AB∥CD∥EF,則,所以A選項的結論正確;B、由AB∥CD,則,所以B選項的結論錯誤;C、由CD∥EF,則,所以C選項的結論正確;D、由AB∥EF,則,所以D選項的結論正確.故選:B.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.6、D【分析】點與點關于點對稱,為點與點的中點,根據(jù)中點公式可以求得.【詳解】解:設點坐標為點與點關于點對稱,為點與點的中點,即解得故選D【點睛】本題考查了坐標與圖形變換,得出點、點與點之間的關系是關鍵.7、A【分析】根據(jù)坡度可以求得該坡角的正切值,根據(jù)正切值即可求得坡角的角度.【詳解】∵坡度為,

∴,

∵,且α為銳角,

∴.

故選:A.【點睛】本題考查了坡度的定義,考查了特殊角的三角函數(shù)值,考查了三角函數(shù)值在直角三角形中的應用.8、D【分析】根據(jù)必然事件、不可能事件、隨機事件的概念解答即可.【詳解】A.某射擊運動員射擊一次,命中靶心,是隨機事件,故此選項錯誤;B.拋一枚硬幣,一定正面朝上,是隨機事件,故此選項錯誤;C.打開電視機,它正在播放新聞聯(lián)播,是隨機事件,故此選項錯誤;D.三角形的內角和等于180°,是必然事件.故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、D【分析】按“左加右減括號內,上加下減括號外”的規(guī)律平移即可得出所求函數(shù)的解析式.【詳解】由題意得=.故選D.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是:將二次函數(shù)解析式轉化成頂點式y(tǒng)=a(x-h)2+k

(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎上“h值正右移,負左移;k值正上移,負下移”.10、A【解析】根據(jù)三角函數(shù)定義可得AD=AC?sin45°,從而可得AD的長,再利用正切定義可得BD的長.【詳解】∵AC=6,∠C=45°∴AD=AC?sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故選A.【點睛】本題主要考查解直角三角形,三角函數(shù)的知識,熟記知識點是解題的關鍵.二、填空題(每小題3分,共24分)11、-3【分析】根據(jù)已知條件證得OB=OA,設點A(a,),過點A作AC⊥x軸,過點B作BD⊥x軸,證明△AOC∽△OBD得到,=,得到點B的坐標,由此求出答案.【詳解】∵△AOB是直角三角形,∠AOB=90°,∠B=30°,∴OB=OA,設點A(a,),過點A作AC⊥x軸,過點B作BD⊥x軸,∴∠ACO=∠BDO=90°,∴∠BOD+∠OBD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴,∴,=,∴B(-,),∴k=-=-3,故答案為:-3.【點睛】此題考查相似三角形的判定及性質,反比例函數(shù)的性質,求函數(shù)的解析式需確定的圖象上點的坐標,由此作輔助線求點B的坐標解決問題.12、【分析】連接OC,OD,OC與AD交于點E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關鍵.13、1【解析】根據(jù)比例尺=圖上距離:實際距離.根據(jù)比例尺關系即可直接得出實際的距離.【詳解】根據(jù)比例尺=圖上距離:實際距離,得:A,B兩地的實際距離為2.6×1000000=100000(cm)=1(千米).故答案為1.【點睛】本題考查了線段的比.能夠根據(jù)比例尺正確進行計算,注意單位的轉換.14、【分析】根據(jù)幾何體的三視圖分析即可得出答案.【詳解】通過主視圖和左視圖可知幾何體有兩層,由俯視圖可知最底層有3個小正方體,結合主視圖和左視圖知第2層有1個小正方體,所以共4個小正方體.故答案為4【點睛】本題主要考查根據(jù)三視圖判斷組成幾何體的小正方體的個數(shù),掌握三視圖的知識是解題的關鍵.15、【分析】直接利用特殊角的三角函數(shù)值得出答案.【詳解】tanA=tan60°=.故答案為:.【點睛】本題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.16、y=(x+1)2﹣1【分析】先確定拋物線C1:y=x2﹣4x+1的頂點坐標為(2,﹣3),再利用點平移的坐標變換規(guī)律,把點(2,﹣3)平移后對應點的坐標為(﹣1,﹣1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線C1:y=x2﹣4x+1=(x﹣2)2﹣3的頂點坐標為(2,﹣3),把點(2,﹣3)先向左平移3個單位,再向下平移2個單位后所得對應點的坐標為(-1,﹣1),所以平移后的拋物線的解析式為y=(x+1)2﹣1,故答案為y=(x+1)2﹣1.【點睛】此題主要考查二次函數(shù)的平移,解題的關鍵是熟知二次函數(shù)平移的特點.17、【分析】根據(jù)判定三角形相似,然后利用相似三角形的性質求解.【詳解】解:∵∴△AEB∽△DEC∴故答案為:【點睛】本題考查相似三角形的判定和性質,掌握相似三角形對應邊成比例,難度不大.18、【分析】過點A作AE⊥AO,并使∠AEO=∠ABC,先證明,由三角函數(shù)可得出,進而求得,再通過證明,可得出,根據(jù)三角形三邊關系可得:,由勾股定理可得,求出BE的最大值,則答案即可求出.【詳解】解:過點A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根據(jù)三角形三邊關系可得:,∵,∴,∴BE的最大值為:,∴OC的最大值為:.【點睛】本題主要考查了三角形相似的判定和性質、三角函數(shù)、勾股定理及三角形三邊關系,解題的關鍵是構造直角三角形.三、解答題(共66分)19、(1)袋子中白球有4個;(2)【分析】(1)設白球有

x

個,利用概率公式得方程,解方程即可求解;(2)畫樹狀圖展示所有30種等可能的結果數(shù),再找出兩次摸到顏色相同的小球的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)設袋中白球有x個,由題意得:,解之,得:,經(jīng)檢驗,是原方程的解,故袋子中白球有4個;(2)設紅球為A、B,白球為,列舉出兩次摸出小球的所有可能情況有:共有30種等可能的結果,其中,兩次摸到相同顏色的小球有14種,故兩次摸到相同顏色的小球的概率為:.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.20、(﹣1,9)【分析】先寫出A、B點的坐標,然后利用交點式寫出拋物線解析式,再利用配方法得到拋物線的頂點坐標.【詳解】解:∵OA=2OB=1,∴B(2,0),A(﹣1,0),∴拋物線解析式為y=﹣(x+1)(x﹣2),即y=﹣x2﹣2x+8,∵y=﹣(x+1)2+9,∴拋物線的頂點坐標為(﹣1,9).【點睛】本題考查了二次函數(shù)的解析式,解決本題的關鍵是正確理解題意,能夠將二次函數(shù)一般式轉化為交點式.21、(1)見解析;(2)90°【分析】(1)根據(jù),,即可推出,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,從而得出∠DMN的度數(shù).【詳解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵,∴又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【點睛】本題考查了正方形的性質的運用,相似三角形的判定及性質的運用,解答時證明△ADM∽△BMN是解答的關鍵.22、(1)BE=AD,BE⊥AD;(2)BE=AD,BE⊥AD仍然成立,理由見解析【分析】(1)由CA=CB,CE=CD,∠ACB=90°易證△BCE≌△ACD,所以BE=AD,∠BEC=∠ADC,又因為∠EBC+∠BEC=90°,所以∠EBC+∠ADC=90°,即BE⊥AD;

(2)成立.設BE與AC的交點為點F,BE與AD的交點為點G,易證△ACD≌△BCE.得到AD=BE,∠CAD=∠CBE.再根據(jù)等量代換得到∠AFG+∠CAD=90°.即BE⊥AD.【詳解】(1)BE=AD,BE⊥AD;在△BCE和△ACD中,∵,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,∴BE⊥AD.故答案為:BE=AD,BE⊥AD.(2)BE=AD,BE⊥AD仍然成立設BE與AC的交點為F,BE與AD的交點為G,如圖∴,∴.在和中,∵∴.∴∵,∴,,∴BE⊥AD【點睛】本題考查了旋轉的性質,全等三角形的判定與性質,等腰直角三角形的性質,熟練掌握性質定理是解題的關鍵.23、(1)證明見解析;(2)CD=1.【分析】(1)利用BA平分∠EBD得到∠ABE=∠ABD,再根據(jù)圓周角定理得到∠ABE=∠ADC,∠ABD=∠ACD,利用等量代換得到∠ACD=∠ADC,從而得到結論;(2)根據(jù)等腰三角形的性質得到∠E=∠ABE,則可證明△ABE∽△ACD,然后根據(jù)相似比求出CD的長.【詳解】(1)證明:∵BA平分∠EBD,∴∠ABE=∠ABD,∵∠ABE=∠ADC,∠ABD=∠ACD,∴∠ACD=∠ADC,∴AC=AD;(2)解:∵AE=AB,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論