版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山東省威海市實驗中學(xué)數(shù)學(xué)九上期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.中國在夏代就出現(xiàn)了相當(dāng)于砝碼的“權(quán)”,此后的多年間,不同朝代有不同形狀和材質(zhì)的“權(quán)”作為衡量的量具.下面是一個“”形增砣砝碼,其俯視圖如下圖所示,則其主視圖為()A. B. C. D.2.一元二次方程x2-4x-1=0配方可化為()A.(x+2)2=3 B.(x+2)2=5 C.(x-2)2=3 D.(x-2)2=53.若反比例函數(shù)的圖象上有兩點P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<04.關(guān)于2,6,1,10,6這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的平均數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的眾數(shù)是6 D.這組數(shù)據(jù)的方差是10.25.一組數(shù)據(jù)0、-1、3、2、1的極差是()A.4 B.3 C.2 D.16.如圖,AB是⊙O的弦,半徑OC⊥AB,D為圓周上一點,若的度數(shù)為50°,則∠ADC的度數(shù)為()A.20° B.25° C.30° D.50°7.小明同學(xué)對數(shù)據(jù)26,36,46,5■,52進行統(tǒng)計分析,發(fā)現(xiàn)其中一個兩位數(shù)的個位數(shù)字被墨水涂污看不到了,則分析結(jié)果與被涂污數(shù)字無關(guān)的是()A.平均數(shù) B.方差 C.中位數(shù) D.眾數(shù)8.美是一種感覺,當(dāng)人體下半身長與身高的比值越接近0.618時,越給人一種美感.某女模特身高165cm,下半身長x(cm)與身高l(cm)的比值是0.1.為盡可能達到好的效果,她應(yīng)穿的高跟鞋的高度大約為()A.4cm B.6cm C.8cm D.10cm9.如圖,圓錐底面半徑為rcm,母線長為5cm,其側(cè)面展開圖是圓心角為216°的扇形,則r的值為()A.3 B.4 C.5 D.610.已知⊙O的半徑是4,OP=5,則點P與⊙O的位置關(guān)系是()A.點P在圓上 B.點P在圓內(nèi) C.點P在圓外 D.不能確定二、填空題(每小題3分,共24分)11.已知反比例函數(shù)的圖象經(jīng)過點(2,﹣3),則此函數(shù)的關(guān)系式是________.12.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標(biāo)A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當(dāng)1<x<4時,有y2<y1,其中正確的是________.13.若圓錐的底面圓半徑為,圓錐的母線長為,則圓錐的側(cè)面積為______.14.寫出一個具有性質(zhì)“在每個象限內(nèi)y隨x的增大而減小”的反比例函數(shù)的表達式為________.15.關(guān)于x的方程kx2-4x-=0有實數(shù)根,則k的取值范圍是.16.在一個不透明的袋中裝有12個紅球和若干個白球,它們除顏色外都相同從袋中隨機摸出一個球,記下顏色后放回,并攪均,不斷重復(fù)上述的試驗共5000次,其中2000次摸到紅球,請估計袋中大約有白球______個17.如圖,直線y=+4與x軸、y軸分別交于A、B兩點,把△AOB繞點A順時針旋轉(zhuǎn)90°后得到△AO′B′,則點B′的坐標(biāo)是_________.18.已知正方形ABCD邊長為4,點P為其所在平面內(nèi)一點,PD=,∠BPD=90°,則點A到BP的距離等于_____.三、解答題(共66分)19.(10分)如圖,拋物線的圖象過點.(1)求拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點P,使得△PAC的周長最小,若存在,請求出點P的坐標(biāo)及△PAC的周長;若不存在,請說明理由;(3)在(2)的條件下,在x軸上方的拋物線上是否存在點M(不與C點重合),使得?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.20.(6分)如圖,AB與⊙O相切于點B,AO及AO的延長線分別交⊙O于D、C兩點,若∠A=40°,求∠C的度數(shù).21.(6分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,拋物線與x軸的另一交點為B.(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;(2)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).22.(8分)先化簡,再求值:,其中x=+2,y=-2.23.(8分)求值:24.(8分)如圖,在平面直角坐標(biāo)系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,點D與點A關(guān)于y軸對稱,tan∠ACB=,點E、F分別是線段AD、AC上的動點,(點E不與點A,D重合),且∠CEF=∠ACB.(1)求AC的長和點D的坐標(biāo);(2)求證:;(3)當(dāng)△EFC為等腰三角形時,求點E的坐標(biāo).25.(10分)在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)分別寫出△ABC各個頂點的坐標(biāo);
(2)分別寫出頂點A關(guān)于x軸對稱的點A′的坐標(biāo)、頂點B關(guān)于y軸對稱的點B′的坐標(biāo)及頂點C關(guān)于原點對稱的點C′的坐標(biāo);
(3)求線段BC的長.26.(10分)某市2012年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報顯示,2012年該市新開工的住房有商品房、廉租房、經(jīng)濟適用房和公共租賃房四種類型.老王對這四種新開工的住房套數(shù)和比例進行了統(tǒng)計,并將統(tǒng)計結(jié)果繪制成下面兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(1)求經(jīng)濟適用房的套數(shù),并補全圖1;(2)假如申請購買經(jīng)濟適用房的對象中共有950人符合購買條件,老王是其中之一.由于購買人數(shù)超過房子套數(shù),購買者必須通過電腦搖號產(chǎn)生.如果對2012年新開工的經(jīng)濟適用房進行電腦搖號,那么老王被搖中的概率是多少?(3)如果計劃2014年新開工廉租房建設(shè)的套數(shù)要達到720套,那么2013~2014這兩年新開工廉租房的套數(shù)的年平均增長率是多少?
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】從正面看中間的矩形的左右兩邊是虛的直線,故選:A.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.2、D【分析】移項,配方,即可得出選項.【詳解】x2?4x?1=0,x2?4x=1,x2?4x+4=1+4,(x?2)2=5,故選:D.【點睛】本題考查了解一元二次方程的應(yīng)用,能正確配方是解此題的關(guān)鍵.3、A【詳解】∵點P1(1,y1)和P2(2,y2)在反比例函數(shù)的圖象上,∴y1=1,y2=,∴y1>y2>1.故選A.4、C【分析】先把數(shù)據(jù)從小到大排列,然后根據(jù)算術(shù)平均數(shù),中位數(shù),眾數(shù)的定義得出這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù),再利用求方差的計算公式求出這組數(shù)據(jù)的方差,再逐項判定即可.【詳解】解:數(shù)據(jù)從小到大排列為:1,2,6,6,10,中位數(shù)為:6;眾數(shù)為:6;平均數(shù)為:;方差為:.故選:C.【點睛】本題考查的知識點是平均數(shù),中位數(shù),眾數(shù),方差的概念定義,熟記定義以及方差公式是解此題的關(guān)鍵.5、A【分析】根據(jù)極差的概念最大值減去最小值即可求解.【詳解】解:這組數(shù)據(jù):0、-1、3、2、1的極差是:3-(-1)=1.
故選A.【點睛】本題考查了極差的知識,極差是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差.6、B【分析】利用圓心角的度數(shù)等于它所對的弧的度數(shù)得到∠BOC=50°,利用垂徑定理得到,然后根據(jù)圓周角定理計算∠ADC的度數(shù).【詳解】∵的度數(shù)為50°,∴∠BOC=50°,∵半徑OC⊥AB,∴,∴∠ADC=∠BOC=25°.故選B.【點睛】本題考查了圓心角、弧、弦的關(guān)系:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.也考查了垂徑定理和圓周角定理.7、C【分析】利用平均數(shù)、中位數(shù)、方差和標(biāo)準(zhǔn)差的定義對各選項進行判斷.【詳解】解:這組數(shù)據(jù)的平均數(shù)、方差和標(biāo)準(zhǔn)差都與被涂污數(shù)字有關(guān),而這組數(shù)據(jù)的中位數(shù)為46,與被涂污數(shù)字無關(guān).故選:C.【點睛】本題考查了方差:它也描述了數(shù)據(jù)對平均數(shù)的離散程度.也考查了中位數(shù)、平均數(shù)和眾數(shù)的概念.掌握以上知識是解題的關(guān)鍵.8、C【分析】根據(jù)比例關(guān)系即可求解.【詳解】∵模特身高165cm,下半身長x(cm)與身高l(cm)的比值是0.1,∴=0.1,解得:x=99,設(shè)需要穿的高跟鞋是ycm,則根據(jù)黃金分割的定義得:=0.612,解得:y≈2.故選:C.【點睛】此題主要考查比例的性質(zhì),解題的關(guān)鍵是熟知比例關(guān)系的定義.9、A【分析】直接根據(jù)弧長公式即可得出結(jié)論.【詳解】∵圓錐底面半徑為rcm,母線長為5cm,其側(cè)面展開圖是圓心角為216°的扇形,∴2πr=×2π×5,解得r=1.故選A.【點睛】本題考查的是圓錐的相關(guān)計算,熟記弧長公式是解答此題的關(guān)鍵.10、C【分析】根據(jù)“點到圓心的距離大于半徑,則點在圓外”即可解答.【詳解】解:∵⊙O的半徑是4,OP=5,5>4即點到圓心的距離大于半徑,∴點P在圓外,故答案選C.【點睛】本題考查了點與圓的位置關(guān)系,通過比較點到圓心的距離與半徑的大小確定點與圓的位置關(guān)系.二、填空題(每小題3分,共24分)11、【解析】試題分析:利用待定系數(shù)法,直接把已知點代入函數(shù)的解析式即可求得k=-6,所以函數(shù)的解析式為:.12、①③⑤【解析】①根據(jù)拋物線的開口方向以及對稱軸為x=1,即可得出a、b之間的關(guān)系以及ab的正負(fù),由此得出①正確,根據(jù)拋物線與y軸的交點在y軸正半軸上,可知c為正結(jié)合a<0、b>0即可得出②錯誤,將拋物線往下平移3個單位長度可知拋物線與x軸只有一個交點從而得知③正確,根據(jù)拋物線的對稱性結(jié)合拋物線的對稱軸為x=1以及點B的坐標(biāo),即可得出拋物線與x軸的另一交點坐標(biāo),④正確,⑤根據(jù)兩函數(shù)圖象的上下位置關(guān)系即可解題.【詳解】∵拋物線的頂點坐標(biāo)A(1,3),∴對稱軸為x=-=1,∴2a+b=0,①正確,∵a,b,拋物線與y軸交于正半軸,∴c∴abc0,②錯誤,∵把拋物線向下平移3個單位長度得到y(tǒng)=ax2+bx+c-3,此時拋物線的頂點也向下平移3個單位長度,∴頂點坐標(biāo)為(1,0),拋物線與x軸只有一個交點,即方程ax2+bx+c=3有兩個相等的實數(shù)根,③正確.∵對稱軸為x=-=1,與x軸的一個交點為(4,0),根據(jù)對稱性質(zhì)可知與x軸的另一個交點為(-2,0),④錯誤,由拋物線和直線的圖像可知,當(dāng)1<x<4時,有y2<y1.,⑤正確.【點睛】本題考查了二次函數(shù)的圖像和性質(zhì),熟悉二次函數(shù)的性質(zhì)是解題關(guān)鍵.13、【分析】根據(jù)圓錐的側(cè)面積公式:S側(cè)=代入數(shù)據(jù)計算即可.【詳解】解:圓錐的側(cè)面積=.故答案為:【點睛】本題考查了圓錐的側(cè)面積公式,屬于基礎(chǔ)題型,熟練掌握計算公式是解題關(guān)鍵.14、y=(答案不唯一)【解析】根據(jù)反比例函數(shù)的性質(zhì),只需要當(dāng)k>0即可,答案不唯一.故答案為y=(答案不唯一).15、k≥-1【解析】試題分析:當(dāng)k=0時,方程變?yōu)橐辉淮畏匠?,有實?shù)根;當(dāng)k≠0時,則有△=(-4)2-4×(-)k≥0,解得k≥-1;綜上可得k≥-1.考點:根的判別式.16、1【解析】根據(jù)口袋中有12個紅球,利用小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等求出即可.【詳解】解:通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率是,口袋中有12個紅球,設(shè)有x個白球,則,解得:,答:袋中大約有白球1個.故答案為:1.【點睛】此題主要考查了用樣本估計總體,根據(jù)已知得出小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等是解決問題的關(guān)鍵.17、(1,3)【分析】首先根據(jù)直線AB求出點A和點B的坐標(biāo),結(jié)合旋轉(zhuǎn)的性質(zhì)可知點B′的橫坐標(biāo)等于OA與OB的長度之和,而縱坐標(biāo)等于OA的長,進而得出B′的坐標(biāo).【詳解】解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,∴A(3,0),B(0,4).
由旋轉(zhuǎn)可得△AOB≌△AO′B′,∠O′AO=90°,
∴∠B′O′A=90°,OA=O′A,OB=O′B′,∴O′B′∥x軸,
∴點B′的縱坐標(biāo)為OA長,即為3;橫坐標(biāo)為OA+O′B′=OA+OB=3+4=1.
故點B′的坐標(biāo)是(1,3),
故答案為:(1,3).【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)以及一次函數(shù)與坐標(biāo)軸的交點問題,利用基本性質(zhì)結(jié)合圖形進行推理是解題的關(guān)鍵.18、或【分析】由題意可得點P在以D為圓心,為半徑的圓上,同時點P也在以BD為直徑的圓上,即點P是兩圓的交點,分兩種情況討論,由勾股定理可求BP,AH的長,即可求點A到BP的距離.【詳解】∵點P滿足PD=,∴點P在以D為圓心,為半徑的圓上,∵∠BPD=90°,∴點P在以BD為直徑的圓上,∴如圖,點P是兩圓的交點,若點P在AD上方,連接AP,過點A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=4,∵∠BPD=90°,∴BP==3,∵∠BPD=90°=∠BAD,∴點A,點B,點D,點P四點共圓,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3﹣AH)2,∴AH=(不合題意),或AH=,若點P在CD的右側(cè),同理可得AH=,綜上所述:AH=或.【點睛】本題是正方形與圓的綜合題,正確確定點P是以D為圓心,為半徑的圓和以BD為直徑的圓的交點是解決問題的關(guān)鍵.三、解答題(共66分)19、(1);(2)存在,點,周長為:;(3)存在,點M坐標(biāo)為【分析】(1)由于條件給出拋物線與x軸的交點,故可設(shè)交點式,把點C代入即求得a的值,減小計算量.(2)由于點A、B關(guān)于對稱軸:直線對稱,故有,則,所以當(dāng)C、P、B在同一直線上時,最小.利用點A、B、C的坐標(biāo)求AC、CB的長,求直線BC解析式,把代入即求得點P縱坐標(biāo).(3)由可得,當(dāng)兩三角形以PA為底時,高相等,即點C和點M到直線PA距離相等.又因為M在x軸上方,故有.由點A、P坐標(biāo)求直線AP解析式,即得到直線CM解析式.把直線CM解析式與拋物線解析式聯(lián)立方程組即求得點M坐標(biāo).【詳解】解:(1)∵拋物線與x軸交于點∴可設(shè)交點式把點代入得:∴拋物線解析式為(2)在拋物線的對稱軸上存在一點P,使得的周長最?。鐖D1,連接PB、BC∵點P在拋物線對稱軸直線上,點A、B關(guān)于對稱軸對稱∵當(dāng)C、P、B在同一直線上時,最小最小設(shè)直線BC解析式為把點B代入得:,解得:∴直線BC:∴點使的周長最小,最小值為.(3)存在滿足條件的點M,使得.∵∴當(dāng)以PA為底時,兩三角形等高∴點C和點M到直線PA距離相等∵M在x軸上方,設(shè)直線AP解析式為解得:∴直線∴直線CM解析式為:解得:(即點C),∴點M坐標(biāo)為【點睛】考查了待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)解析式,軸對稱的最短路徑問題,勾股定理,平行線間距離處處相等,一元二次方程的解法.其中第(3)題條件給出點M在x軸上方,無需分類討論,解法較常規(guī)而簡單.20、∠C=25°.【分析】連接OB,利用切線的性質(zhì)OB⊥AB,進而可得∠BOA=50°,再利用外角等于不相鄰兩內(nèi)角的和,即可求得∠C的度數(shù).【詳解】解:如圖,連接OB,∵AB與⊙O相切于點B,∴OB⊥AB,∵∠A=40°,∴∠BOA=50°,又∵OC=OB,∴∠C=∠BOA=25°.【點睛】本題主要考查切線的性質(zhì),解決此類題目時,知切點,則連半徑,若不知切點,則作垂直.21、(1)y=x+3,y=﹣x2﹣2x+3;(2)(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,)【分析】(1)首先由題意根據(jù)拋物線的對稱性求得點B的坐標(biāo),然后利用交點式,求得拋物線的解析式;再利用待定系數(shù)法求得直線的解析式;(2)首先利用勾股定理求得BC,PB,PC的長,然后分別從點B為直角頂點、點C為直角頂點、點P為直角頂點去分析求解即可求得答案.【詳解】解:(1)∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),拋物線與x軸的另一交點為B,∴B的坐標(biāo)為:(﹣3,0),設(shè)拋物線的解析式為:y=a(x﹣1)(x+3),把C(0,3)代入,﹣3a=3,解得:a=﹣1,∴拋物線的解析式為:y=﹣(x﹣1)(x+3)=﹣x2﹣2x+3;把B(﹣3,0),C(0,3)代入y=mx+n得:,解得:,∴直線y=mx+n的解析式為:y=x+3;(2)設(shè)P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若點B為直角頂點,則BC2+PB2=PC2,即:18+4+t2=t2﹣6t+10,解之得:t=﹣2;②若點C為直角頂點,則BC2+PC2=PB2,即:18+t2﹣6t+10=4+t2,解之得:t=4,③若點P為直角頂點,則PB2+PC2=BC2,即:4+t2+t2﹣6t+10=18,解之得:t1=,t2=;綜上所述P的坐標(biāo)為(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【點睛】本題考查二次函數(shù)的圖象與性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.22、,【解析】試題分析:先根據(jù)分式的混合運算順序和法則化簡原式,再將x、y的值代入求解可得.解:原式===當(dāng),時,原式===.點睛:本題主要考查分式的化簡求值,熟練掌握分式的混合運算順序和法則是解題的關(guān)鍵.23、2.【分析】先將三角函數(shù)值代入,再根據(jù)混合運算順序依此計算可得.【詳解】原式=【點睛】本題主要考查了特殊角的三角函數(shù)值,解題的關(guān)鍵是熟練掌握各特殊角的三角函數(shù)值.24、(1)AC=20,D(12,0);(2)見解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函數(shù)和勾股定理即可求出BC、AC的長度,從而得到A點坐標(biāo),由點D與點A關(guān)于y軸對稱,進而得到D點的坐標(biāo);(2)欲證,只需證明△AEF與△DCE相似,只需要證明兩個對應(yīng)角相等即可.在△AEF與△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性質(zhì)證得∠AEF=∠DCE,問題即得解決;(3)當(dāng)△EFC為等腰三角形時,有三種情況,需要分類討論:①當(dāng)CE=EF時,此時△AEF與△DCE相似比為1,則有AE=CD,即可求出E點坐標(biāo);②當(dāng)EF=FC時,利用等腰三角形的性質(zhì)和解直角三角形的知識易求得CE,再利用(2)題的結(jié)論即可求出AE的長,進而可求出E點坐標(biāo);③當(dāng)CE=CF時,可得E點與D點重合,這與已知條件矛盾,故此種情況不存在.【詳解】解:(1)∵四邊形ABCO為矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A點坐標(biāo)為(﹣12,0),∵點D與點A關(guān)于y軸對稱,∴D(12,0);(2)∵點D與點A關(guān)于y軸對稱,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)當(dāng)△EFC為等腰三角形時,有以下三種情況:①當(dāng)CE=EF時,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②當(dāng)EF=FC時,如圖1所示,過點F作FM⊥CE于M,則點M為CE中點,∴CE=2ME=2EF?cos∠CEF=2EF?cos∠ACB=.∵△AEF∽△DCE,∴,即:,解得:AE=,∴OE=AE﹣OA=,∴E(,0).③當(dāng)CE=CF時,則有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此時F點與A點重合,E點與D點重合,這與已知條件矛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金色的魚鉤教案范文10篇
- 半年個人工作計劃
- 元宵大班教案
- 2021北師大版三年級數(shù)學(xué)下冊教案設(shè)計
- 四年級上冊語文教學(xué)計劃4篇
- 等待高中作文(集錦15篇)
- 幼兒園畢業(yè)實習(xí)報告3篇
- 在外貿(mào)公司實習(xí)報告集合8篇
- 上半年道路交通安全工作總結(jié)
- 天宮課堂第三課300字作文10篇參考
- 廣東省珠海市2023-2024學(xué)年高二上學(xué)期語文期中試卷(含答案)
- 山東省淄博市周村區(qū)(五四制)2023-2024學(xué)年七年級上學(xué)期期末考試英語試題(含答案無聽力原文及音頻)
- GB/T 44317-2024熱塑性塑料內(nèi)襯油管
- 七年級道德與法治期末復(fù)習(xí)計劃范文兩篇
- 酒店英語會話(第六版)教案全套 李永生 unit 1 Room Reservations -Unit 15 Handling Problems and Complaints
- 創(chuàng)傷失血性休克中國急診專家共識2023解讀課件
- 大學(xué)英語智慧樹知到期末考試答案章節(jié)答案2024年海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院
- 執(zhí)行力神經(jīng)機制與腦成像研究
- 冷鏈物流高質(zhì)量發(fā)展“十四五”規(guī)劃
- 2024年新疆烏魯木齊市選調(diào)生考試(公共基礎(chǔ)知識)綜合能力題庫完美版
- 2024年中荊投資控股集團有限公司招聘筆試沖刺題(帶答案解析)
評論
0/150
提交評論