湖南省東安縣2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第1頁
湖南省東安縣2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第2頁
湖南省東安縣2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第3頁
湖南省東安縣2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第4頁
湖南省東安縣2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列立體圖形中,主視圖是三角形的是(

).A. B. C. D.2.已知二次函數(shù)y=ax1+bx+c+1的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根為x1=x1=﹣1;⑤若點B(﹣,y1)、C(﹣,y1)為函數(shù)圖象上的兩點,則y1>y1.其中正確的個數(shù)是()A.1 B.3 C.4 D.53.若x=﹣1是關(guān)于x的一元二次方程ax2﹣bx﹣2019=0的一個解,則1+a+b的值是()A.2017 B.2018 C.2019 D.20204.下圖中,最能清楚地顯示每組數(shù)據(jù)在總數(shù)中所占百分比的統(tǒng)計圖是()A. B.C. D.5.圖中幾何體的俯視圖是()A. B. C. D.6.如圖,是圓的直徑,直線與圓相切于點,交圓于點,連接.若,則的度數(shù)是()A. B. C. D.7.下列關(guān)于一元二次方程(,是不為的常數(shù))的根的情況判斷正確的是()A.方程有兩個相等的實數(shù)根 B.方程有兩個不相等的實數(shù)根C.方程沒有實數(shù)根 D.方程有一個實數(shù)根8.將二次函數(shù)y=x2的圖象向右平移一個單位長度,再向下平移3個單位長度所得的圖象解析式為()A.y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣39.下列各式計算正確的是()A. B. C. D.10.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.正五邊形 D.圓二、填空題(每小題3分,共24分)11.如圖,約定:上方相鄰兩數(shù)之和等于這兩數(shù)下方箭頭共同指向的數(shù).當(dāng)y=﹣1時,n=_____.12.已知⊙O的直徑AB=20,弦CD⊥AB于點E,且CD=16,則AE的長為_______.13.某商場為方便消費者購物,準備將原來的階梯式自動扶梯改造成斜坡式自動扶梯.如圖所示,已知原階梯式自動扶梯長為,坡角為;改造后的斜坡式自動扶梯的坡角為,則改造后的斜坡式自動扶梯的長度約為________.(結(jié)果精確到,溫馨提示:,,)14.我市某公司前年繳稅40萬元,今年繳稅48.4萬元.該公司繳稅的年平均增長率為.15.邊長為4cm的正方形ABCD繞它的頂點A旋轉(zhuǎn)180°,頂點B所經(jīng)過的路線長為(______)cm.16.如圖,點是雙曲線在第二象限分支上的一個動點,連接并延長交另一分支于點,以為底作等腰,且,點在第一象限,隨著點的運動點的位置也不斷變化,但點始終在雙曲線上運動,則的值為________.17.如圖,AB是⊙O的直徑,且AB=6,弦CD⊥AB交AB于點P,直線AC,DB交于點E,若AC:CE=1:2,則OP=_____.18.若二次函數(shù)的圖象與x軸的兩個交點和頂點構(gòu)成等邊三角形,則稱這樣的二次函數(shù)的圖象為標準拋物線.如圖,自左至右的一組二次函數(shù)的圖象T1,T2,T3……是標準拋物線,且頂點都在直線y=x上,T1與x軸交于點A1(2,0),A2(A2在A1右側(cè)),T2與x軸交于點A2,A3,T3與x軸交于點A3,A4,……,則拋物線Tn的函數(shù)表達式為_____.三、解答題(共66分)19.(10分)某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結(jié)果如下:甲1061068乙79789經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.(1)求乙進球的平均數(shù)和方差;(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應(yīng)選誰?為什么?20.(6分)一個布袋中有紅、黃、綠三種顏色的球各一個,從中先摸出一個球,記錄下它的顏色,將它放回布袋,攪勻,再摸出一個球,記錄下它的顏色.(1)試用樹形圖或列表法中的一種列舉出這兩次摸出球的顏色所有可能的結(jié)果;(2)求兩次摸出球中至少有一個綠球的概率.21.(6分)(1)如圖1,在平行四邊形ABCD中,點E1,E2是AB三等分點,點F1,F(xiàn)2是CD三等分點,E1F1,E2F2分別交AC于點G1,G2,求證:AG1=G1G2=G2C.(2)如圖2,由64個邊長為1的小正方形組成的一個網(wǎng)格圖,線段MN的兩個端點在格點上,請用一把無刻度的尺子,畫出線段MN三等分點P,Q.(保留作圖痕跡)22.(8分)如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.(1)求這個二次函數(shù)的解析式;(2)是否存在點P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.23.(8分)已知拋物線.(1)若,,,求該拋物線與軸的交點坐標;(2)若,且拋物線在區(qū)間上的最小值是-3,求的值.24.(8分)如圖,點O是等邊三角形ABC內(nèi)的一點,∠BOC=150°,將△BOC繞點C按順時針旋轉(zhuǎn)得到△ADC,連接OD,OA.(1)求∠ODC的度數(shù);(2)若OB=4,OC=5,求AO的長.25.(10分)閱讀材料:求解一元一次方程,需要根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式;求解二元一次方程組,需要通過消元把它轉(zhuǎn)化為一元一次方程來解;求解三元一次方程組,要把它轉(zhuǎn)化為二元一次方程組來解;求解一元二次方程,需要把它轉(zhuǎn)化為連個一元一次方程來解;求解分式方程,需要通過去分母把它轉(zhuǎn)化為整式方程來解;各類方程的解法不盡相同,但是它們都用到一種共同的基本數(shù)學(xué)思想——轉(zhuǎn)化,即把未知轉(zhuǎn)化為已知來求解.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,解一元三次方程,通過因式分解把它轉(zhuǎn)化為,通過解方程和,可得原方程的解.再例如,解根號下含有來知數(shù)的方程:,通過兩邊同時平方把它轉(zhuǎn)化為,解得:.因為,且,所以不是原方程的根,是原方程的解.(1)問題:方程的解是,__________,__________;(2)拓展:求方程的解.26.(10分)如圖,直線與雙曲線在第一象限內(nèi)交于、兩點,已知,.(1)__________,____________________,____________________.(2)直接寫出不等式的解集;(3)設(shè)點是線段上的一個動點,過點作軸于點,是軸上一點,求的面積的最大值.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖.【詳解】A、C、D主視圖是矩形,故A、C、D不符合題意;B、主視圖是三角形,故B正確;故選B.【點睛】本題考查了簡單幾何體的三視圖,圓錐的主視圖是三角形.2、D【解析】根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由拋物線的對稱軸可知:,∴,由拋物線與軸的交點可知:,∴,∴,故①正確;②拋物線與軸只有一個交點,∴,∴,故②正確;③令,∴,∵,∴,∴,∴,∵,∴,故③正確;④由圖象可知:令,即的解為,∴的根為,故④正確;⑤∵,∴,故⑤正確;故選D.【點睛】考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運用數(shù)形結(jié)合的思想.3、D【分析】根據(jù)x=-1是關(guān)于x的一元二次方程ax2﹣bx﹣2019=0的一個解,可以得到a+b的值,從而可以求得所求式子的值.【詳解】解:∵x=﹣1是關(guān)于x的一元二次方程ax2﹣bx﹣2019=0的一個解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故選:D.【點睛】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確題意,求出所求式子的值.4、A【分析】根據(jù)統(tǒng)計圖的特點進行分析可得:扇形統(tǒng)計圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況;條形統(tǒng)計圖能清楚地表示出每個項目的具體數(shù)目.【詳解】解:在進行數(shù)據(jù)描述時,要顯示部分在總體中所占的百分比,應(yīng)采用扇形統(tǒng)計圖.

故選:A.【點睛】本題考查統(tǒng)計圖的選擇,解決本題的關(guān)鍵是明確:扇形統(tǒng)計圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況;條形統(tǒng)計圖能清楚地表示出每個項目的具體數(shù)目;頻率分布直方圖,清楚顯示在各個不同區(qū)間內(nèi)取值,各組頻率分布情況,易于顯示各組之間頻率的差別.5、D【解析】本題考查了三視圖的知識找到從上面看所得到的圖形即可.從上面看可得到三個矩形左右排在一起,中間的較大,故選D.6、B【分析】根據(jù)切線的性質(zhì)可得:∠BAP=90°,然后根據(jù)三角形的內(nèi)角和定理即可求出∠AOC,最后根據(jù)圓周角定理即可求出.【詳解】解:∵直線與圓相切∴∠BAP=90°∵∴∠AOC=180°-∠BAP-∠P=48°∴故選B.【點睛】此題考查的是切線的性質(zhì)和圓周角定理,掌握切線的性質(zhì)和同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.7、B【分析】首先用表示出根的判別式,結(jié)合非負數(shù)的性質(zhì)即可作出判斷.【詳解】由題可知二次項系數(shù)為,一次項系數(shù)為,常數(shù)項為,,是不為的常數(shù),,方程有兩個不相等的實數(shù)根,故選:B.【點睛】本題主要考查了根的判別式的知識,解答此題要掌握一元二次方程根的情況與判別式△的關(guān)系:①△>0?方程有兩個不相等的實數(shù)根;②△=0?方程有兩個相等的實數(shù)根③△<0?方程沒有實數(shù)根.8、C【分析】根據(jù)平移原則:上→加,下→減,左→加,右→減寫出解析式.【詳解】解:將二次函數(shù)y=x2的圖象向右平移一個單位長度,再向下平移1個單位長度所得的圖象解析式為:y=(x﹣1)2﹣1.故選:C.【點睛】主要考查了函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.9、D【分析】根據(jù)二次根式的加減法對A、B進行判斷;根據(jù)二次根式的乘法法則對C進行判斷;根據(jù)二次根式的除法法則對D進行判斷.【詳解】A.與不能合并,所以A選項錯誤;B.原式=,所以B選項錯誤;C.原式=6×3=18,所以C選項錯誤;D.原式所以D選正確.故選D.【點睛】考查二次根式的運算,熟練掌握二次根式加減乘除的運算法則是解題的關(guān)鍵.10、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、平行四邊形不是軸對稱圖形,是中心對稱圖形,故B錯誤;C、正五邊形是軸對稱圖形,不是中心對稱圖形,故C錯誤;D、圓是軸對稱圖形,也是中心對稱圖形,故D正確.故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱的定義,根據(jù)定義得出圖形形狀是解決問題的關(guān)鍵.二、填空題(每小題3分,共24分)11、-1.【分析】首先根據(jù)題意,可得:x2+2x=m,2x+3=n,m+n=y(tǒng);然后根據(jù)y=﹣1,可得:x2+2x+2x+3=﹣1,據(jù)此求出x的值是多少,進而求出n的值是多少即可.【詳解】根據(jù)題意,可得:x2+2x=m,2x+3=n,m+n=y(tǒng),∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案為:﹣1.【點睛】此題考查一元二次方程的解法,根據(jù)方程的特點選擇適合的解法是解題的關(guān)鍵.12、16或1【分析】結(jié)合垂徑定理和勾股定理,在Rt△OCE中,求得OE的長,則AE=OA+OE或AE=OA-OE,據(jù)此即可求解.【詳解】解:如圖,連接OC,∵⊙O的直徑AB=20∴OC=OA=OB=10∵弦CD⊥AB于點E∴CE=CD=8,在Rt△OCE中,OE=則AE=OA+OE=10+6=16,如圖:同理,此時AE=OA-OE=10-6=1,故AE的長是16或1.【點睛】本題考查勾股定理和垂徑定理的應(yīng)用,根據(jù)題意做出圖形是本題的解題關(guān)鍵,注意分類討論.13、19.1【分析】先在Rt△ABD中,用三角函數(shù)求出AD,最后在Rt△ACD中用三角函數(shù)即可得出結(jié)論.【詳解】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=ABsin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=15°,sin∠ACD=,∴AC=≈≈19.1(m),即:改造后的斜坡式自動扶梯AC的長度約為19.1m.故答案為:19.1.【點睛】此題主要考查了解直角三角形的應(yīng)用,解決此問題的關(guān)鍵在于正確理解題意得基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.14、10%.【解析】設(shè)該公司繳稅的年平均增長率是x,則去年繳稅40(1+x)萬元,今年繳稅40(1+x)(1+x)=40(1+x)2萬元.據(jù)此列出方程:40(1+x)2=48.4,解得x=0.1或x=-2.1(舍去).∴該公司繳稅的年平均增長率為10%.15、4π【解析】試題解析:∵邊長為4cm的正方形ABCD繞它的頂點A旋轉(zhuǎn)180°,頂點B所經(jīng)過的路線是一段弧長,

弧長是以點A為圓心,AB為半徑,圓心角是180°的弧長,

∴根據(jù)弧長公式可得:=4π.

故選A.16、2【分析】作軸于D,軸于E,連接OC,如圖,利用反比例函數(shù)的性質(zhì)得到點A與點B關(guān)于原點對稱,再根據(jù)等腰三角形的性質(zhì)得,,接著證明∽,根據(jù)相似三角形的性質(zhì)得,利用k的幾何意義得到,然后解絕對值方程可得到滿足條件的k的值.【詳解】解:作軸于D,軸于E,連接OC,如圖,過原點,點A與點B關(guān)于原點對稱,,為等腰三角形,,,,,,,,∽,,而,,即,而,.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)為常數(shù),的圖象是雙曲線,圖象上的點的橫縱坐標的積是定值k,即雙曲線是關(guān)于原點對稱的,兩個分支上的點也是關(guān)于原點對稱;在圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值也考查了等腰三角形的性質(zhì)和相似三角形的判定與性質(zhì).17、1.【分析】過點E作EF⊥AB于點F,證明△ACP∽△AEF以及△PBD∽△FBE,設(shè)PB=x,然后利用相似三角形的性質(zhì)即可求出答案.【詳解】過點E作EF⊥AB于點F,∵CP⊥AB,AC:CE=1:2,∴CP∥EF,AC:AE=1:3,∴△ACP∽△AEF,∴,∵PD∥EF,∴△PBD∽△FBE,∴,∵PC=PD,∴,設(shè)PB=x,BF=3x,∴AP=6﹣x,AF=6+3x,∴,解得:x=2,∴PB=2,∴OP=1,故答案為:1.【點睛】本題考查了圓中的計算問題,熟練掌握垂徑定理,相似三角形的判定與性質(zhì)是解題的關(guān)鍵.18、【分析】設(shè)拋物線T1,T2,T3…的頂點依次為B1,B2,B3…,連接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,過拋物線各頂點作x軸的垂線,由△A1B1A2是等邊三角形,結(jié)合頂點都在直線y=x上,可以求出,A2(4,0),進而得到T1的表達式:,同理,依次類推即可得到結(jié)果.【詳解】解:設(shè)拋物線T1,T2,T3…的頂點依次為B1,B2,B3…,連接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,過拋物線各頂點作x軸的垂線,如圖所示:∵△A1B1A2是等邊三角形,∴∠B1A1A2=60°,∵頂點都在直線y=x上,設(shè),∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1?cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),設(shè)T1的解析式為:,則,∴,∴T1:,同理,T2的解析式為:,T3的解析式為:,…則Tn的解析式為:,故答案為:.【點睛】本題考查了等邊三角形的性質(zhì),直角三角形中銳角三角函數(shù)值的應(yīng)用,直線表達式的應(yīng)用,圖形規(guī)律中類比歸納思想的應(yīng)用,頂點式設(shè)二次函數(shù)解析式并求解,掌握二次函數(shù)解析式的求解是解題的關(guān)鍵.三、解答題(共66分)19、(1)乙平均數(shù)為8,方差為0.8;(2)乙.【分析】(1)根據(jù)平均數(shù)、方差的計算公式計算即可;(2)根據(jù)平均數(shù)相同時,方差越大,波動越大,成績越不穩(wěn)定;方差越小,波動越小,成績越穩(wěn)定進行解答.【詳解】(1)乙進球的平均數(shù)為:(7+9+7+8+9)÷5=8,乙進球的方差為:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均數(shù)相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波動較小,成績更穩(wěn)定,∴應(yīng)選乙去參加定點投籃比賽.【點睛】本題考查了方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.也考查了平均數(shù).20、(1)詳見解析;(2)【分析】(1)利用樹狀圖列舉出所有可能,注意是放回小球再摸一次;(2)列舉出符合題意的各種情況的個數(shù),再根據(jù)概率公式解答即可.【詳解】(1)列樹狀圖如下:故(紅,紅),(紅,黃),(紅,綠),(黃,紅),(黃,黃),(黃,綠),(綠,紅),(綠,黃),(綠,綠)共9種情況(2)由樹狀圖可知共有3×3=9種可能,“兩次摸出球中至少有一個綠球”的有5種,所以概率是:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)見解析;(2)見解析【分析】(1)利用平行線分線段成比例定理證明即可.(2)利用(1)中結(jié)論,構(gòu)造平行四邊形解決問題即可.【詳解】解:(1)證明:如圖1中,∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,AD∥BC,∵DF1=CD,AE1=AB,∴DF1=AE1,∴四邊形ADF1E1是平行四邊形,∴AD∥E1F1,∴E1G1∥BC,∴,同法可證:,∴AG1=CG2=AC,∴AG1=G1G2=G2C.(2)如圖,點P,Q即為所求.【點睛】本題主要考查了平行四邊形的性質(zhì),平行線分線段成比例定理,掌握平行四邊形的性質(zhì),平行線分線段成比例定理是解題的關(guān)鍵.22、(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)當(dāng)P點坐標為(2,﹣6)時,△PBC的最大面積為1.【詳解】試題分析:(1)由A、B、C三點的坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由題意可知點P在線段OC的垂直平分線上,則可求得P點縱坐標,代入拋物線解析式可求得P點坐標;(3)過P作PE⊥x軸,交x軸于點E,交直線BC于點F,用P點坐標可表示出PF的長,則可表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得△PBC面積的最大值及P點的坐標.試題解析:(1)設(shè)拋物線解析式為y=ax2+bx+c,把A、B、C三點坐標代入可得,解得,∴拋物線解析式為y=x2﹣3x﹣4;(2)作OC的垂直平分線DP,交OC于點D,交BC下方拋物線于點P,如圖1,∴PO=PD,此時P點即為滿足條件的點,∵C(0,﹣4),∴D(0,﹣2),∴P點縱坐標為﹣2,代入拋物線解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在滿足條件的P點,其坐標為(,﹣2);(3)∵點P在拋物線上,∴可設(shè)P(t,t2﹣3t﹣4),過P作PE⊥x軸于點E,交直線BC于點F,如圖2,∵B(4,0),C(0,﹣4),∴直線BC解析式為y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF?OE+PF?BE=PF?(OE+BE)=PF?OB=(﹣t2+4t)×4=﹣2(t﹣2)2+1,∴當(dāng)t=2時,S△PBC最大值為1,此時t2﹣3t﹣4=﹣6,∴當(dāng)P點坐標為(2,﹣6)時,△PBC的最大面積為1.考點:二次函數(shù)綜合題.23、(1)(-1,0),;(2)b=7或.【分析】(1)將,,代入解析式,然后令y=0,求x的值,使問題得解;(2)求得函數(shù)的對稱軸是x=-b,然后分成-b≤-2,-2<-b≤2和-b>2三種情況進行討論,然后根據(jù)最小值是-3,即可解方程求解.【詳解】解:(1)當(dāng),,時當(dāng)y=0時,解得:∴該拋物線與x軸的交點為(-1,0),(2)當(dāng),時,∴拋物線的對稱軸是x==-b.當(dāng)-b≤-2,即b≥2時,在區(qū)間上,y隨x增大而增大∴當(dāng)x=-2時,y最小為解得:b=7;當(dāng)-2<-b≤2時,即-2≤b<2,在區(qū)間上當(dāng)x=-b時,y最小為解得:b=(不合題意)或b=(不合題意)當(dāng)-b>2,即b<-2時,在區(qū)間上,y隨x增大而減小∴當(dāng)x=2時,y最小為解得:b=.綜上,b=7或.【點睛】本題考查了二次函數(shù)與x軸的交點以及函數(shù)的最值,注意討論對稱軸的位置是本題的關(guān)鍵.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論