版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.關(guān)于x的一元二次方程x2+mx﹣1=0的根的情況為()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.不能確定2.在一個不透明的布袋中,有紅色、黑色、白色球共40個,它們除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn)其中摸到紅色球、黑色球的頻率穩(wěn)定在和,則布袋中白色球的個數(shù)可能是()A.24 B.18 C.16 D.63.拋物線與坐標(biāo)軸的交點個數(shù)為()A.個 B.個或個 C.個 D.不確定4.如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A、B兩點,C(m,﹣3)是圖象上的一點,且AC⊥BC,則a的值為()A.2 B. C.3 D.5.如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點,頂點為D1;將C1繞點A1旋轉(zhuǎn)180°得到C2,頂點為D2;C1與C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1(x1,y1),P2(x2,y2),與線段D1D2交于點P3(x3,y3),設(shè)x1,x2,x3均為正數(shù),t=x1+x2+x3,則t的取值范圍是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤126.如圖,平行四邊形ABCD中,E為AD的中點,已知△DEF的面積為S,則四邊形ABCE的面積為(
)A.8S B.9S C.10S D.11S7.在一個不透明的袋子里裝有5個紅球和若干個白球,它們除顏色外其余完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.2附近,則估計袋中的白球大約有()個A.10 B.15 C.20 D.258.若雙曲線的圖象的一支位于第三象限,則k的取值范圍是()A.k<1 B.k>1 C.0<k<1 D.k≤19.下列詩句所描述的事件中,是不可能事件的是()A.黃河入海流B.鋤禾日當(dāng)午C.大漠孤煙直D.手可摘星辰10.化簡的結(jié)果是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.12.二次函數(shù)(a<0)圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣3,1,與y軸交于點C,下面四個結(jié)論:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)13.計算若,那么a2019+b2020=____________.14.如圖,在由邊長為1的小正方形組成的網(wǎng)格中.點A,B,C,D都在這些小正方形的格點上,AB、CD相交于點E,則sin∠AEC的值為_____.15.如圖,在四邊形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,點P從點A出發(fā),以3個單位/s的速度沿AD→DC向終點C運動,同時點Q從點B出發(fā),以1個單位/s的速度沿BA向終點A運動,在運動期間,當(dāng)四邊形PQBC為平行四邊形時,運動時間為__________秒.16.已知關(guān)于x的方程x2+3x+m=0有一個根為﹣2,則m=_____,另一個根為_____.17.現(xiàn)有兩個不透明的袋子,一個裝有2個紅球、1個白球,另一個裝有1個黃球、2個紅球,這些球除顏色外完全相同.從兩個袋子中各隨機摸出1個球,摸出的兩個球顏色相同的概率是_____.18.如圖,矩形ABCD中,AB=3cm,AD=6cm,點E為AB邊上的任意一點,四邊形EFGB也是矩形,且EF=2BE,則S△AFC=__________cm2.三、解答題(共66分)19.(10分)解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=1220.(6分)霧霾天氣嚴(yán)重影響人民的生活質(zhì)量.在今年“元旦”期間,某校九(1)班的綜合實踐小組同學(xué)對“霧霾天氣的主要成因”隨機調(diào)查了本地部分市民,并對調(diào)查結(jié)果進行了整理,繪制了如圖不完整的統(tǒng)計圖表,觀察分析并回答下列問題.組別霧霾天氣的主要成因A工業(yè)污染B汽車尾氣排放C爐煙氣排放D其他(濫砍濫伐等)(1)本次被調(diào)查的市民共有多少人?(2)分別補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)若該地區(qū)有100萬人口,請估計持有A、B兩組主要成因的市民有多少人?21.(6分)如圖,四邊形是平行四邊形,,,點為邊的中點,點在的延長線上,且.點在線段上,且,垂足為.(1)若,且,,求的長;(2)求證:.22.(8分)如圖,直線與雙曲線在第一象限內(nèi)交于兩點,已知.(1)求的值及直線的解析式.(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.(3)設(shè)點是線段上的一個動點,過點作軸于點是軸上一點,當(dāng)?shù)拿娣e為時,請直接寫出此時點的坐標(biāo).23.(8分)如圖,兩個轉(zhuǎn)盤中指針落在每個數(shù)字上的機會相等,現(xiàn)同時轉(zhuǎn)動、兩個轉(zhuǎn)盤,停止后,指針各指向一個數(shù)字.小力和小明利用這兩個轉(zhuǎn)盤做游戲,若兩數(shù)之積為非負數(shù)則小力勝;否則,小明勝.(1)畫樹狀圖或列表求出各人獲勝的概率。(2)這個游戲公平嗎?說說你的理由24.(8分)數(shù)學(xué)實踐小組的同學(xué)利用太陽光下形成的影子測量大樹的高度.在同一時刻下,他們測得身高為1.5米的同學(xué)立正站立時的影長為2米,大樹的影子分別落在水平地面和臺階上.已知大樹在地面的影長為2.4米,臺階的高度均為3.3米,寬度均為3.5米.求大樹的高度.25.(10分)如圖,在中,,,,點從點開始沿邊向點以的速度移動,同時,點從點開始沿邊向點以的速度移動(到達點,移動停止).(1)如果,分別從,同時出發(fā),那么幾秒后,的長度等于?(2)在(1)中,的面積能否等于?請說明理由.26.(10分)計算:(1)sin30°-(5-tan75°)0;(2)3tan230°-sin45°+sin60°.
參考答案一、選擇題(每小題3分,共30分)1、A【解析】計算出方程的判別式為△=m2+4,可知其大于0,可判斷出方程根的情況.【詳解】方程x2+mx﹣1=0的判別式為△=m2+4>0,所以該方程有兩個不相等的實數(shù)根,故選:A.【點睛】此題主要考查根的判別式,解題的關(guān)鍵是求出方程根的判別式進行判斷.2、C【分析】先由頻率之和為1計算出白球的頻率,再由數(shù)據(jù)總數(shù)×頻率=頻數(shù)計算白球的個數(shù).【詳解】∵摸到紅色球、黑色球的頻率穩(wěn)定在15%和45%,∴摸到白球的頻率為1?15%?45%=40%,故口袋中白色球的個數(shù)可能是40×40%=16個.故選:C.【點睛】大量反復(fù)試驗下頻率穩(wěn)定值即概率.關(guān)鍵是算出摸到白球的頻率.3、C【分析】根據(jù)題意,與y軸有一個交點,令y=0,利用根的判別式進行判斷一元二次方程的根的情況,得到與x軸的交點個數(shù),即可得到答案.【詳解】解:拋物線與y軸肯定有一個交點;令y=0,則,∴==;∴拋物線與x軸有2個交點;∴拋物線與坐標(biāo)軸的交點個數(shù)有3個;故選:C.【點睛】本題考查了二次函數(shù)與坐標(biāo)軸的交點情況,以及一元二次方程根的判別式,解題的關(guān)鍵是掌握二次函數(shù)的性質(zhì),正確得到與坐標(biāo)軸的交點.4、D【分析】在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根據(jù)根與系數(shù)的關(guān)系即可求得a的值.【詳解】過點C作CD⊥AB于點D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,設(shè)ax2+bx+c=0的兩根分別為x1與x2(x1≤x2),∴A(x1,0),B(x2,0).依題意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化簡得:m2﹣m(x1+x2)+9+x1x2=0,∴m2m+90,∴am2+bn+c=﹣9a.∵(m,﹣3)是圖象上的一點,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a.故選:D.【點睛】本題是二次函數(shù)的綜合試題,考查了二次函數(shù)的性質(zhì)和圖象,解答本題的關(guān)鍵是注意數(shù)形結(jié)合思想.5、D【解析】首先證明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解決問題.【詳解】翻折后的拋物線的解析式為y=(x﹣4)2﹣4=x2﹣8x+12,∵設(shè)x1,x2,x3均為正數(shù),∴點P1(x1,y1),P2(x2,y2)在第四象限,根據(jù)對稱性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12,即10≤t≤12,故選D.【點睛】本題考查二次函數(shù)與x軸的交點,二次函數(shù)的性質(zhì),拋物線的旋轉(zhuǎn)等知識,熟練掌握和靈活應(yīng)用二次函數(shù)的相關(guān)性質(zhì)以及旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.6、B【解析】分析:由于四邊形ABCD是平行四邊形,那么AD∥BC,AD=BC,根據(jù)平行線分線段成比例定理的推論可得△DEF∽△BCF,再根據(jù)E是AD中點,易求出相似比,從而可求的面積,再利用與是同高的三角形,則兩個三角形面積比等于它們的底之比,從而易求的面積,進而可求的面積.詳解:如圖所示,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中點,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四邊形ABCE的面積=9S,故選B.點睛:相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.7、C【分析】由摸到紅球的頻率穩(wěn)定在0.2附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】設(shè)白球個數(shù)為x個,∵摸到紅色球的頻率穩(wěn)定在0.2左右,∴口袋中得到紅色球的概率為0.2,∴,解得:x=20,經(jīng)檢驗x=20是原方程的根,故白球的個數(shù)為20個.故選C.【點睛】此題主要考查了利用頻率估計概率,根據(jù)大量反復(fù)試驗下頻率穩(wěn)定值即概率得出是解題關(guān)鍵.8、B【分析】根據(jù)反比例函數(shù)的性質(zhì)解答即可.【詳解】∵雙曲線的圖象的一支位于第三象限,∴k﹣1>0,∴k>1.故選B.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)y(k≠0),當(dāng)k>0時,圖象在第一、三象限,且在每一個象限y隨x的增大而減小;當(dāng)k<0時,函數(shù)圖象在第二、四象限,且在每一個象限y隨x的增大而增大,熟練掌握反比例函數(shù)的性質(zhì)是解答本題的關(guān)鍵.9、D【解析】不可能事件是指在一定條件下,一定不發(fā)生的事件.【詳解】A、是必然事件,故選項錯誤;B、是隨機事件,故選項錯誤;C、是隨機事件,故選項錯誤;D、是不可能事件,故選項正確.故選D.【點睛】此題主要考查了必然事件,不可能事件,隨機事件的概念.理解概念是解決這類基礎(chǔ)題的主要方法.必然事件指在一定條件下,一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、D【解析】將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、55.【詳解】試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.12、①③.【解析】解:①∵a<0,∴拋物線開口向下,∵圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣3,1,∴當(dāng)x=﹣4時,y<0,即16a﹣4b+c<0;故①正確;②∵圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣3,1,∴拋物線的對稱軸是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由對稱性得:(﹣4.5,y3)與Q(,y2)是對稱點,∴則y1<y2;故②不正確;③∵=﹣1,∴b=2a,當(dāng)x=1時,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB為等腰三角形,則必須保證AB=BC=4或AB=AC=4或AC=BC,當(dāng)AB=BC=4時,∵AO=1,△BOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣9=7,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣;同理當(dāng)AB=AC=4時,∵AO=1,△AOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣1=15,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣;同理當(dāng)AC=BC時,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程無實數(shù)解.經(jīng)解方程組可知有兩個b值滿足條件.故⑤錯誤.綜上所述,正確的結(jié)論是①③.故答案為①③.點睛:本題考查了等腰三角形的判定、方程組的解、拋物線與坐標(biāo)軸的交點、二次函數(shù)的圖象與系數(shù)的關(guān)系:當(dāng)a<0,拋物線開口向下;拋物線的對稱軸為直線x=;拋物線與y軸的交點坐標(biāo)為(0,c),與x軸的交點為(x1,0)、(x2,0).13、0【分析】根據(jù)二次根式和絕對值的非負數(shù)性質(zhì)可求出a、b的值,進而可得答案.【詳解】∵,∴(a+1)2=0,b-1=0,解得:a=-1,b=1,∴a2019+b2020=-1+1=0,故答案為:0【點睛】本題考查二次根式和絕對值的非負數(shù)性質(zhì),如果幾個非負數(shù)的和為0,那么這幾個非負數(shù)分別為0;熟練掌握非負數(shù)性質(zhì)是解題關(guān)鍵.14、【分析】通過作垂線構(gòu)造直角三角形,由網(wǎng)格的特點可得Rt△ABD是等腰直角三角形,進而可得Rt△ACF是等腰直角三角形,求出CF,再根據(jù)△ACE∽△BDE的相似比為1:3,根據(jù)勾股定理求出CD的長,從而求出CE,最后根據(jù)銳角三角函數(shù)的意義求出結(jié)果即可.【詳解】過點C作CF⊥AE,垂足為F,在Rt△ACD中,CD=,由網(wǎng)格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC?sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案為:.【點睛】考查銳角三角函數(shù)的意義、直角三角形的邊角關(guān)系,作垂線構(gòu)造直角三角形是解決問題常用的方法,借助網(wǎng)格,利用網(wǎng)格中隱含的邊角關(guān)系是解決問題的關(guān)鍵.15、3【分析】首先利用t表示出CP和CQ的長,根據(jù)四邊形PQBC是平行四邊形時CP=BQ,據(jù)此列出方程求解即可.【詳解】解:設(shè)運動時間為t秒,如圖,則CP=12-3t,BQ=t,四邊形PQBC為平行四邊形12-3t=t,解得:t=3,故答案為【點睛】本題考查了平行四邊形的判定及動點問題,解題的關(guān)鍵是化動為靜,分別表示出CP和BQ的長,難度不大.16、2x=﹣1【分析】將x=﹣2代入方程即可求出m的值,然后根據(jù)根與系數(shù)的關(guān)系即可取出另外一個根.【詳解】解:將x=﹣2代入x2+3x+m=0,∴4﹣6+m=0,∴m=2,設(shè)另外一個根為x,∴﹣2+x=﹣3,∴x=﹣1,故答案為:2,x=﹣1【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關(guān)系式:,.17、【分析】列表得出所有等可能結(jié)果,從中找到兩個球顏色相同的結(jié)果數(shù),利用概率公式計算可得.【詳解】解:列表如下:黃紅紅紅(黃,紅)(紅,紅)(紅,紅)紅(黃,紅)(紅,紅)(紅,紅)白(黃,白)(紅,白)(紅,白)由表知,共有9種等可能結(jié)果,其中摸出的兩個球顏色相同的有4種結(jié)果,所以摸出的兩個球顏色相同的概率為,故答案為.【點睛】本題考查了列表法與樹狀圖的知識,解題的關(guān)鍵是能夠用列表或列樹狀圖將所有等可能的結(jié)果列舉出來,難度不大.18、9【解析】連接BF,過B作BO⊥AC于O,過點F作FM⊥AC于M.Rt△ABC中,AB=3,BC=6,.∵∠CAB=∠BAC,∠AOB=∠ABC,∴△AOB∽△ABC,,.∵EF=BG=2BE=2GF,BC=2AB,∴Rt△BGF和Rt△ABC中,,∴Rt△BGF∽Rt△ABC,∴∠FBG=∠ACB,∴AC∥BF,∴S△AFC=AC×FM=9.【點睛】△ACF中,AC的長度不變,所以以AC為底邊求面積.因為兩矩形相似,所以易證AC∥BF,從而△ACF的高可用BO表示.在△ABC中求BO的長度,即可計算△ACF的面積.三、解答題(共66分)19、(1)x=7或x=﹣1(2)x=﹣5或x=3【分析】(1)方程兩邊同時加16,根據(jù)完全平方公式求解方程即可.(2)開括號,再移項合并同類項,根據(jù)十字相乘法求解方程即可.【詳解】(1)∵x2﹣6x﹣7=0,∴x2﹣6x+9=16,∴(x﹣3)2=16,∴x﹣3=±4,∴x=7或x=﹣1;(2)原方程化為:x2+2x﹣15=0,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【點睛】本題考查了解一元二次方程的問題,掌握解一元二次方程的方法是解題的關(guān)鍵.20、(1)200人;(2)圖見解析;(3)75萬人.【分析】(1)根據(jù)A組的人數(shù)和所占的百分比可以求得本次被調(diào)查的市民共有多少人;(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得C組和D組的人數(shù),計算出B組和D組所占的百分比,從而可以將統(tǒng)計圖補充完整;(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出持有A、B兩組主要成因的市民有多少人.【詳解】解:(1)90÷45%=200(人),即本次被調(diào)查的市民共有200人;(2)C組有200×15%=30(人),D組有:200﹣90﹣60﹣30=20(人),B組所占的百分比為:×100%=30%,D組所占的百分比是:×100%=10%,補全的條形統(tǒng)計圖和扇形統(tǒng)計圖如右圖所示;(3)100×(45%+30%)=75(萬人),答:持有A、B兩組主要成因的市民有75萬人.【點睛】本題考查了扇形統(tǒng)計圖和頻數(shù)直方圖,解決本題的關(guān)鍵是扇形統(tǒng)計圖和頻數(shù)直方圖里的數(shù)據(jù)關(guān)系要相對應(yīng).21、(1);(2)證明見解析【分析】(1)由勾股定理求出BF,進而得出AE的長,再次利用勾股定理得出AB的長,最后根據(jù)平行四邊形的性質(zhì)與勾股定理求出AD的長;(2)設(shè),根據(jù)勾股定理求出CH的長,利用直角三角形斜邊上的中線是斜邊的一半得出EH的長,進而得出CE的長,根據(jù)得出,利用勾股定理求出BG,GH的長,根據(jù)求出BF,進而得證.【詳解】(1)解:∵,,且,,∴由勾股定理知,,∴,∴由勾股定理知,,∵四邊形是平行四邊形,,,∴由勾股定理知,;(2)證明:∵點為邊的中點,,設(shè),∴,由勾股定理知,,∵,∴是斜邊上的中線,∴,∴,∵,即,∵,∴,∴,即,∴,∴在中,,∴解得,,,∵易證,∴,即,∵,∴,∴,∴.【點睛】本題考查平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),勾股定理,直角三角形斜邊中線的性質(zhì)等,熟練掌握相似三角形的判定與勾股定理是解題的關(guān)鍵.22、(1),(2)解集為或(3)【分析】(1)先把B(2,1)代入,求出反比例函數(shù)解析式,進而求出點A坐標(biāo),最后用待定系數(shù)法,即可得出直線AB的解析式;(2)直接利用函數(shù)圖象得出結(jié)論;(3)先設(shè)出點P坐標(biāo),進而表示出△PED的面積等于,解之即可得出結(jié)論.【詳解】解:(1):∵點在雙曲線上,∴,∴雙曲線的解析式為.∵在雙曲線,∴,∴.∵直線過兩點,∴,解得∴直線的解析式為(2)根據(jù)函數(shù)圖象,由不等式與函數(shù)圖像的關(guān)系可得:雙曲線在直線上方的部分對應(yīng)的x范圍是:或,∴不等式的解集為或.(3)點的坐標(biāo)為.設(shè)點,且,則.∵當(dāng)時,解得,∴此時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智慧城市建設(shè)合作合同范本2篇
- 二零二五版在線教育管理系統(tǒng)定制開發(fā)合同3篇
- 二零二五版ISO9001質(zhì)量管理體系認(rèn)證與質(zhì)量管理體系審核與監(jiān)督合同3篇
- 水電工程2025年度施工安全評估合同2篇
- 二零二五版LED顯示屏戶外廣告位租賃合同協(xié)議3篇
- 二零二五年海鮮餐飲業(yè)特色菜品開發(fā)與銷售合同3篇
- 二零二五年度虛擬現(xiàn)實游戲開發(fā)電子合同承諾3篇
- 二零二五版智能零售企業(yè)兼職銷售員勞動合同3篇
- 二零二五版教育培訓(xùn)合同變更協(xié)議范本2篇
- 二零二五版分布式光伏電力安全維護合同3篇
- DLT 5285-2018 輸變電工程架空導(dǎo)線(800mm以下)及地線液壓壓接工藝規(guī)程
- 新員工入職培訓(xùn)測試題附有答案
- 勞動合同續(xù)簽意見單
- 大學(xué)生國家安全教育意義
- 2024年保育員(初級)培訓(xùn)計劃和教學(xué)大綱-(目錄版)
- 河北省石家莊市2023-2024學(xué)年高二上學(xué)期期末考試 語文 Word版含答案
- 企業(yè)正確認(rèn)識和運用矩陣式管理
- 分布式光伏高處作業(yè)專項施工方案
- 陳閱增普通生物學(xué)全部課件
- 檢驗科主任就職演講稿范文
- 人防工程主體監(jiān)理質(zhì)量評估報告
評論
0/150
提交評論