山東省青島西海岸新區(qū)第四中學2022年數(shù)學九年級第一學期期末達標檢測試題含解析_第1頁
山東省青島西海岸新區(qū)第四中學2022年數(shù)學九年級第一學期期末達標檢測試題含解析_第2頁
山東省青島西海岸新區(qū)第四中學2022年數(shù)學九年級第一學期期末達標檢測試題含解析_第3頁
山東省青島西海岸新區(qū)第四中學2022年數(shù)學九年級第一學期期末達標檢測試題含解析_第4頁
山東省青島西海岸新區(qū)第四中學2022年數(shù)學九年級第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,已知.按照以下步驟作圖:①以點為圓心,以適當?shù)拈L為半徑作弧,分別交的兩邊于,兩點,連接.②分別以點,為圓心,以大于線段的長為半徑作弧,兩弧在內交于點,連接,.③連接交于點.下列結論中錯誤的是()A. B.C. D.2.若關于的一元二次方程的兩個實數(shù)根是和3,那么對二次函數(shù)的圖像和性質的描述錯誤的是()A.頂點坐標為(1,4) B.函數(shù)有最大值4 C.對稱軸為直線 D.開口向上3.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米4.如圖,雙曲線與直線相交于、兩點,點坐標為,則點坐標為()A. B. C. D.5.拋物線的頂點坐標是()A.(2,?0) B.(-2,?0) C.(0,?2) D.(0,?-2)6.某超市一月份的營業(yè)額為36萬元,三月份的營業(yè)額為48萬元,設每月的平均增長率為x,則可列方程為()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=487.一元二次方程的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.只有一個實數(shù)根8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,那么下列說法正確的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>09.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.10.下列方程有兩個相等的實數(shù)根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=011.如圖,在矩形ABCD中,DE⊥AC垂足為F,交BC于點E,BE=2EC,連接AE.則tan∠CAE的值為()A. B. C. D.12.下列說法錯誤的是()A.必然事件發(fā)生的概率是1B.通過大量重復試驗,可以用頻率估計概率C.概率很小的事件不可能發(fā)生D.投一枚圖釘,“釘尖朝上”的概率不能用列舉法求得二、填空題(每題4分,共24分)13.如圖,、是兩個等邊三角形,連接、.若,,,則__________.14.某種藥原來每瓶售價為40元,經過兩次降價,現(xiàn)在每瓶售價為25.6元,若設平均每次降低的百分率為,根據(jù)題意列出方程為______________________.15.將拋物線y=x2﹣2x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為____________________________16.方程的根為.17.cos30°=__________18.計算:________.三、解答題(共78分)19.(8分)如圖所示,中,,,將翻折,使得點落到邊上的點處,折痕分別交邊,于點、點,如果,那么______.20.(8分)已知關于的方程.(1)當取何值時,方程有兩個不相等的實數(shù)根;(2)若、為方程的兩個不等實數(shù)根,且滿足,求的值.21.(8分)在精準脫貧期間,江口縣委、政府對江口教育制定了目標,為了保證2018年中考目標的實現(xiàn),對九年級進行了一次模擬測試,現(xiàn)對這次模擬測試的數(shù)學成績進行了分段統(tǒng)計,統(tǒng)計如表,共有2500名學生參加了這次模擬測試,為了解本次考試成績,從中隨機抽取了部分學生的數(shù)學成績x(得分均為整數(shù),滿分為100分)進行統(tǒng)計后得到下表,請根據(jù)表格解答下列問題:(1)隨機抽取了多少學生?(2)根據(jù)表格計算:a=;b=.分組頻數(shù)頻率x<30140.0730≤x<6032b60≤x<90a0.6290≤x300.15合計﹣1(3)設60分(含60)以上為合格,請據(jù)此估計我縣這次這次九年級數(shù)學模擬測試成績合格的學生有多少名?22.(10分)初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高m,與籃圈中心的水平距離為7m,當球出手后水平距離為4m時到達最大高度4m,設籃球運行的軌跡為拋物線,籃圈距地面3m.(1)建立如圖所示的平面直角坐標系,求拋物線的解析式并判斷此球能否準確投中?(2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?23.(10分)關于的一元二次方程(1)若方程的一個根為1,求方程的另一個根和的值(2)求證:不論取何實數(shù),方程總有兩個不相等的實數(shù)根.24.(10分)計算:(1)tan60°-+(3.14-π)0;(2)解方程:.25.(12分)如圖,已知拋物線C1交直線y=3于點A(﹣4,3),B(﹣1,3),交y軸于點C(0,6).(1)求C1的解析式.(2)求拋物線C1關于直線y=3的對稱拋物線的解析式;設C2交x軸于點D和點E(點D在點E的左邊),求點D和點E的坐標.(3)將拋物線C1水平向右平移得到拋物線C3,記平移后點B的對應點B′,若DB平分∠BDE,求拋物線C3的解析式.(4)直接寫出拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式.26.四邊形ABCD是正方形,對角線AC,BD相交于點O.(1)如圖1,點P是正方形ABCD外一點,連接OP,以OP為一邊,作正方形OPMN,且邊ON與邊BC相交,連接AP,BN.①依題意補全圖1;②判斷AP與BN的數(shù)量關系及位置關系,寫出結論并加以證明;(2)點P在AB延長線上,且∠APO=30°,連接OP,以OP為一邊,作正方形OPMN,且邊ON與BC的延長線恰交于點N,連接CM,若AB=2,求CM的長(不必寫出計算結果,簡述求CM長的過程)

參考答案一、選擇題(每題4分,共48分)1、C【分析】利用基本作圖得出是角平分線的作圖,進而解答即可.【詳解】由作圖步驟可得:是的角平分線,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四邊形OCED=S△COE+S△DOE=,但不能得出,∴A、B、D選項正確,不符合題意,C選項錯誤,符合題意,故選C.【點睛】本題考查了作圖﹣基本作圖,全等三角形的判定與性質,等腰三角形的性質,三角形的面積等,熟練掌握5種基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)是解題的關鍵.2、D【分析】由題意根據(jù)根與系數(shù)的關系得到a<0,根據(jù)二次函數(shù)的性質即可得到二次函數(shù)y=a(x-1)2+1的開口向下,對稱軸為直線x=1,頂點坐標為(1,1),當x=1時,函數(shù)有最大值1.【詳解】解:∵關于x的一元二次方程的兩個實數(shù)根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函數(shù)的開口向下,對稱軸為直線x=1,頂點坐標為(1,1),當x=1時,函數(shù)有最大值1,故A、B、C敘述正確,D錯誤,故選:D.【點睛】本題考查二次函數(shù)的性質,根據(jù)一元二次方程根與系數(shù)的關系以及根據(jù)二次函數(shù)的性質進行分析是解題的關鍵.3、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.4、B【解析】反比例函數(shù)的圖象是中心對稱圖形,則經過原點的直線的兩個交點一定關于原點對稱.【詳解】解:點A與B關于原點對稱,點坐標為A點的坐標為(2,3).所以B選項是正確的.【點睛】本題主要考查了反比例函數(shù)圖象的中心對稱性,要求同學們要熟練掌握.5、A【分析】依據(jù)拋物線的解析式即可判斷頂點坐標.【詳解】解:∵拋物線,∴拋物線的頂點坐標為(2,0).故選A.【點睛】掌握拋物線y=a(x-h)2+k的頂點坐標為(h,k)是解題的關鍵.6、D【分析】主要考查增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設教育經費的年平均增長率為x,然后根據(jù)已知條件可得出方程.【詳解】∵某超市一月份的營業(yè)額為36萬元,每月的平均增長率為x,∴二月份的營業(yè)額為36(1+x),三月份的營業(yè)額為36(1+x)×(1+x)=36(1+x)2.∴根據(jù)三月份的營業(yè)額為48萬元,可列方程為36(1+x)2=48.故選D.【點睛】本題考查了一元二次方程的應用,找到關鍵描述語,就能找到等量關系,是解決問題的關鍵.同時要注意增長率問題的一般規(guī)律.7、B【分析】直接利用判別式△判斷即可.【詳解】∵△=∴一元二次方程有兩個不等的實根故選:B.【點睛】本題考查一元二次方程根的情況,注意在求解判別式△時,正負號不要弄錯了.8、B【分析】利用拋物線開口方向確定a的符號,利用對稱軸方程可確定b的符號,利用拋物線與y軸的交點位置可確定c的符號.【詳解】∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴x=﹣>0,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,故選B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.9、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.【點睛】本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關鍵.10、C【分析】先根據(jù)方程求出△的值,再根據(jù)根的判別式的意義判斷即可.【詳解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程沒有實數(shù)根,故本選項不符合題意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有兩個不相等的實數(shù)根,故本選項不符合題意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有兩個相等的實數(shù)根,故本選項符合題意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有兩個不相等的實數(shù)根,故本選項不符合題意;故選:C.【點睛】本題考查了根的判別式,能熟記根的判別式的意義是解此題的關鍵.11、C【分析】證明△AFD∽△CFE,得出,由△CFE∽△DFC,得出,設EF=x,則DE=3x,再由三角函數(shù)定義即可得出答案.【詳解】解:設EC=x,∵BE=2EC=2x,∴BC=BE+CE=3x,∵四邊形ABCD是矩形,

∴AD=BC=3x,AD∥EC,

∴△AFD∽△CFE,

∴,,設CF=n,設EF=m,

∴DF=3EF=3m,AF=3CF=3n,∵△ECD是直角三角形,,

∴△CFE∽△DFC,

∴,∴,即,

∴,∵,∴tan∠CAE=,

故選:C.【點睛】本題考查了相似三角形的判定和性質,矩形的性質,三角函數(shù)等知識;熟練掌握矩形的性質,證明三角形相似是解題的關鍵.12、C【解析】不確定事件就是隨機事件,即可能發(fā)生也可能不發(fā)生的事件,發(fā)生的概率大于0并且小于1【詳解】A、必然事件發(fā)生的概率是1,正確;B、通過大量重復試驗,可以用頻率估計概率,正確;C、概率很小的事件也有可能發(fā)生,故錯誤;D、投一枚圖釘,“釘尖朝上”的概率不能用列舉法求得,正確,故選:C.【點睛】本題考查了概率的意義,概率的意義反映的只是這一事件發(fā)生的可能性的大小,概率取值范圍:0≤p≤1,其中必然發(fā)生的事件的概率P(A)=1;不可能發(fā)生事件的概率P(A)=0;隨機事件,發(fā)生的概率大于0并且小于1.事件發(fā)生的可能性越大,概率越接近與1,事件發(fā)生的可能性越小,概率越接近于0.二、填空題(每題4分,共24分)13、1【分析】連接AC,證明△ADC≌△BDE,則AC=BE,在Rt△ABC中,利用勾股定理可求解問題.【詳解】連接AC,根據(jù)等邊三角形的性質可知AD=BD,ED=CD,∠ADB=∠EDC=60°.∴∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴AC=BE.∵∠ABC=∠ABD+∠DBC=60°+30°=90°,∴在Rt△ABC中,利用勾股定理可得AC==1.故答案為:1.【點睛】本題主要考查了全等三角形的判定和性質、等邊三角形的性質、勾股定理,在應用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構造三角形.14、【分析】設平均每次降低的百分率為x,根據(jù)某種藥原來每瓶為40元,經過兩次降價,現(xiàn)在每瓶售價25.1元列出方程,解方程即可.【詳解】設平均每次降低的百分率為x,根據(jù)題意得:40(1﹣x)2=25.1.故答案為:40(1﹣x)2=25.1.【點睛】本題考查了一元二次方程的應用,解題的關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.15、或【分析】根據(jù)函數(shù)圖象向上平移加,向右平移減,可得函數(shù)解析式.【詳解】解:將y=x1-1x+3化為頂點式,得:y=(x-1)1+1.將拋物線y=x1-1x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案為:或.【點睛】本題考查了二次函數(shù)圖象與幾何變換,函數(shù)圖象的平移規(guī)律是:左加右減,上加下減.16、.【解析】試題分析:x(x-1)=0解得:=0,=1.考點:解一元二次方程.17、【分析】直接利用特殊角的三角函數(shù)值進而得出答案.【詳解】cos30°=.故答案為.【點睛】本題主要考查了特殊角的三角函數(shù)值,準確記憶特殊角的三角函數(shù)值是解題的關鍵.18、【分析】根據(jù)特殊角的三角函數(shù)值直接書寫即可.【詳解】故答案為:.【點睛】本題考查了特殊角的三角函數(shù)值,牢固記憶是解題的關鍵.三、解答題(共78分)19、【分析】設BE=x,則AE=5-x=AF=A′F,CF=6-(5-x)=1+x,依據(jù)△A'CF∽△BCA,可得,即,進而得到.【詳解】解:如圖,由折疊可得,∠AFE=∠A′FE,

∵A′F∥AB,∴∠AEF=∠A′FE,

∴∠AEF=∠AFE,∴AE=AF,

由折疊可得,AF=A′F,

設BE=x,則AE=5-x=AF=A′F,CF=6-(5-x)=1+x,

∵A′F∥AB,∴△A′CF∽△BCA,

∴,即,解得x=,

∴.

故答案為:.【點睛】本題主要考查了折疊問題以及相似三角形的判定與性質的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.20、(1)當且時,方程有兩個不相等的實數(shù)根;(2)【分析】(1)由方程有兩個不相等的實數(shù)根,可得>0,繼而求得m的取值范圍;

(2)由根與系數(shù)的關系,可得和,再根據(jù)已知得到方程并解方程即可得到答案.【詳解】(1)關于的方程,,,∵方程有兩個不相等的實數(shù)根,

∴>0,

解得:,

∵二次項系數(shù),

∴,

∴當且時,方程有兩個不相等的實數(shù)根;(2)∵為方程的兩個不等實數(shù)根,

∴,,∴,解得:,(不合題意,舍去),∴.【點睛】本題考查了根的判別式以及根與系數(shù)的關系.注意當>0時,方程有兩個不相等的兩個實數(shù)根;注意若是一元二次方程(a≠0)的兩根時,,.21、(1)200名;(2)124,0.16;(3)1925名【分析】(1)由題意根據(jù)頻數(shù)分布表中的數(shù)據(jù),可以計算出隨機抽取的學生人數(shù);(2)由題意根據(jù)(1)中的數(shù)據(jù)和頻數(shù)分布表中的數(shù)據(jù),可以計算出a和b的值;(3)根據(jù)頻數(shù)分布表中的數(shù)據(jù),即可計算出我縣這次這次九年級數(shù)學模擬測試成績合格的學生有多少名.【詳解】解:(1)14÷0.07=200(名),即隨機抽取了200名學生;(2)a=200×0.62=124,b=32÷200=0.16,故答案為:124,0.16;(3)2500×(0.62+0.15)=2500×0.77=1925(名),答:我縣這次這次九年級數(shù)學模擬測試成績合格的學生有1925名.【點睛】本題考查頻數(shù)分布表和用樣本估計總體,解答本題的關鍵是明確題意并求出相應的數(shù)據(jù).22、(1)y=?(x?4)2+4;能夠投中;(2)能夠蓋帽攔截成功.【分析】(1)根據(jù)題意可知:拋物線經過(0,),頂點坐標是(4,4),然后設出拋物線的頂點式,將(0,)代入,即可求出拋物線的解析式,然后判斷籃圈的坐標是否滿足解析式即可;(2)當時,求出此時的函數(shù)值,再與3.1m比較大小即可判斷.【詳解】解:由題意可知,拋物線經過(0,),頂點坐標是(4,4).設拋物線的解析式是,將(0,)代入,得解得,所以拋物線的解析式是;籃圈的坐標是(7,3),代入解析式得,∴這個點在拋物線上,∴能夠投中答:能夠投中.(2)當時,<3.1,所以能夠蓋帽攔截成功.答:能夠蓋帽攔截成功.【點睛】此題考查的是二次函數(shù)的應用,掌握二次函數(shù)的頂點式和利用二次函數(shù)解析式解決實際問題是解決此題的關鍵.23、(1),另一個根是;(2)詳見解析.【分析】(1)代入x=1求出m值,從而得出方程,解方程即可;

(2)根據(jù)方程的系數(shù)結合根的判別式,即可得出△>0,由此可證出:不論m取何實數(shù),此方程都有兩個不相等的實數(shù)根.【詳解】解:(1)把代入原方程得解得:當時,原方程為解得:∴方程的另一個根是(2)證明:∵∴∴不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.【點睛】本題考查了根的判別式以及一元二次方程的解,由判別式的符號得到方程根的情況是解題的關鍵.24、(1)2;(2)x1=2,x2=1.【分析】(1)根據(jù)特殊角的三角函數(shù)值,絕對值的意義和零指數(shù)冪的運算法則計算即可;(2)利用因式分解法解方程即可.【詳解】(1)解:原式=-+1+1=2;(2),,或,∴x1=2,x2=1.【點睛】本題主要考查實數(shù)的混合運算及解一元二次方程,掌握特殊角的三角函數(shù)值,絕對值的意義,零指數(shù)冪的運算法則和因式分解法是解題的關鍵.25、(1)C1的解析式為y=x2+x+1;(2)拋物線C2的解析式為y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)拋物線C3的解析式為y=;(4)y=x2x+2n﹣1.【分析】(1)設拋物線C1經的解析式為y=ax2+bx+c,將點A、B、C的坐標代入求解即可得到解析式;(2)先求出點C關于直線y=3的對稱點的坐標為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,即可求出答案;(3)如圖,根據(jù)平行線的性質及角平分線的性質得到BB′=DB,利用勾股定理求出DB的長度即可得到拋物線平移的距離,由此得到平移后的解析式;(4)設拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式為y=mx+nx+k,根據(jù)對稱性得到m、n的值,再利用對稱性得到新函數(shù)與y軸交點坐標得到k的值,由此得到函數(shù)解析式.【詳解】(1)設拋物線C1經的解析式為y=ax2+bx+c,∵拋物線C1經過點A(﹣4,3),B(﹣1,3),C(0,1).∴,解得,∴C1的解析式為y=x2+x+1;(2)∵C點關于直線y=3的對稱點為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,∴,解得,∴拋物線C2的解析式為y=﹣x2﹣x;令y=0,則﹣x2﹣x=0,解得x1=0,x2=﹣5,∴D(﹣5,0),E(0,0);(3)如圖,∵DB′平分∠BDE,∴∠BDB′=∠ODB′,∵AB∥x軸,∴∠BB′D=∠ODB′,∴∠BDB′=∠BB′D,∴BB′=DB,∵BD==5,∴將拋物線C1水平向右平移5個單位得到拋物線C3,∵C1的解析式為y=x2+x+1=(x+)2+,∴拋物線C3的解析式為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論