版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.按照一定規(guī)律排列的個數(shù):-2,4,-8,16,-32,64,….若最后三個數(shù)的和為768,則為()A.9 B.10 C.11 D.122.如圖所示是濱河公園中的兩個物體一天中四個不同時刻在太陽光的照射下落在地面上的影子,按照時間的先后順序排列正確的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2)C.(4)(3)(2)(1) D.(2)(4)(3)(1)3.如圖,AB是半圓的直徑,點D是的中點,∠ABC=50°,則∠DAB等于()A.65° B.60° C.55° D.50°4.已知圓錐的底面半徑是4,母線長是9,則圓錐側面展開圖的面積是()A. B. C. D.5.二次函數(shù)y=(x﹣4)2+2圖象的頂點坐標是()A.(﹣4,2) B.(4,﹣2) C.(4,2) D.(﹣4,﹣2)6.已知將二次函數(shù)y=x2+bx+c的圖象向右平移2個單位,再向下平移3個單位,所得圖象的解析式為y=x2-4x-5,則b,c的值為()A.b=1,c=6 B.b=1.c=-5 C.b=1.c=-6 D.b=1,c=57.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③8.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>39.如圖,是等邊三角形,且與軸重合,點是反比例函數(shù)的圖象上的點,則的周長為()A. B. C. D.10.在一個不透明的口袋中裝有個完全相同的小球,把它們分別標號為,從中隨機摸出一個小球,其標號小于的概率為()A. B. C. D.11.拋物線的頂點坐標是()A. B. C. D.12.如圖,點是矩形的邊,上的點,過點作于點,交矩形的邊于點,連接.若,,則的長的最小值為()A. B. C. D.二、填空題(每題4分,共24分)13.一個三角形的三邊之比為,與它相似的三角形的周長為,則與它相似的三角形的最長邊為____________.14.如圖,直角三角形中,,,,在線段上取一點,作交于點,現(xiàn)將沿折疊,使點落在線段上,對應點記為;的中點的對應點記為.若,則______.15.分解因式:x3﹣4x2﹣12x=_____.16.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.17.若點P(m,-2)與點Q(3,n)關于原點對稱,則=______.18.如圖,正方形和正方形的邊長分別為3和1,點、分別在邊、上,為的中點,連接,則的長為_________.三、解答題(共78分)19.(8分)已知是的反比例函數(shù),下表給出了與的一些值.…-4-2-1134……-263…(1)求出這個反比例函數(shù)的表達式;(2)根據(jù)函數(shù)表達式完成上表;(3)根據(jù)上表,在下圖的平面直角坐標系中作出這個反比例函數(shù)的圖象.20.(8分)(1)x2﹣2x﹣3=0(2)cos45°?tan45°+tan30°﹣2cos60°2sin45°21.(8分)如圖,在南北方向的海岸線上,有兩艘巡邏船,現(xiàn)均收到故障船的求救信號.已知兩船相距海里,船在船的北偏東60°方向上,船在船的東南方向上,上有一觀測點,測得船正好在觀測點的南偏東75°方向上.(1)分別求出與,與間的距離和;(本問如果有根號,結果請保留根號)(此提示可以幫助你解題:∵,∴)(2)已知距觀測點處100海里范圍內(nèi)有暗礁,若巡邏船沿直線去營救船,去營救的途中有無觸礁的危險?(參考數(shù)據(jù):)22.(10分)(1)解方程:.(2)計算:.23.(10分)如圖1,在和中,頂點是它們的公共頂點,,.(特例感悟)(1)當頂點與頂點重合時(如圖1),與相交于點,與相交于點,求證:四邊形是菱形;(探索論證)(2)如圖2,當時,四邊形是什么特殊四邊形?試證明你的結論;(拓展應用)(3)試探究:當?shù)扔诙嗌俣葧r,以點為頂點的四邊形是矩形?請給予證明.24.(10分)如圖,是的直徑,半徑OC⊥弦AB,點為垂足,連、.(1)若,求的度數(shù);(2)若,,求的半徑.25.(12分)(2016山東省聊城市)如圖,在直角坐標系中,直線與反比例函數(shù)的圖象交于關于原點對稱的A,B兩點,已知A點的縱坐標是1.(1)求反比例函數(shù)的表達式;(2)將直線向上平移后與反比例函數(shù)在第二象限內(nèi)交于點C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達式.26.如圖,矩形紙片ABCD,將△AMP和△BPQ分別沿PM和PQ折疊(AP>AM),點A和點B都與點E重合;再將△CQD沿DQ折疊,點C落在線段EQ上點F處.(1)判斷△AMP,△BPQ,△CQD和△FDM中有哪幾對相似三角形?(不需說明理由)(2)如果AM=1,sin∠DMF=,求AB的長.
參考答案一、選擇題(每題4分,共48分)1、B【分析】觀察得出第n個數(shù)為(-2)n,根據(jù)最后三個數(shù)的和為768,列出方程,求解即可.【詳解】由題意,得第n個數(shù)為(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,當n為偶數(shù):整理得出:3×2n-2=768,解得:n=10;當n為奇數(shù):整理得出:-3×2n-2=768,則求不出整數(shù).故選B.2、C【解析】試題分析:根據(jù)平行投影的特點和規(guī)律可知,(3),(4)是上午,(1),(2)是下午,根據(jù)影子的長度可知先后為(4)(3)(2)(1).故選C.考點:平行投影.3、A【分析】連結BD,由于點D是的中點,即,根據(jù)圓周角定理得∠ABD=∠CBD,則∠ABD=25°,再根據(jù)直徑所對的圓周角為直角得到∠ADB=90°,然后利用三角形內(nèi)角和定理可計算出∠DAB的度數(shù).【詳解】解:連結BD,如圖,∵點D是的中點,即,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圓的直徑,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故選:A.【點睛】本題考查了圓周角定理及其推論:在同圓或等圓中,同弧或等弧所對的圓周角相等;直徑所對的圓周角為直角.4、D【分析】先根據(jù)圓的周長公式計算出圓錐的底面周長,然后根據(jù)扇形的面積公式,即可求出圓錐側面展開圖的面積.【詳解】解:圓錐的底面周長為:2×4=,則圓錐側面展開圖的面積是.故選:D.【點睛】此題考查的是求圓錐的側面面積,掌握圓的周長公式和扇形的面積公式是解決此題的關鍵.5、C【分析】利用二次函數(shù)頂點式可直接得到拋物線的頂點坐標.【詳解】解:∵y=(x﹣4)2+2,∴頂點坐標為(4,2),故答案為C.【點睛】本題考查了二次函數(shù)的頂點式,掌握頂點式各參數(shù)的含義是解答本題的關鍵.6、C【分析】首先拋物線平移時不改變a的值,其中點的坐標平移規(guī)律是上加下減,左減右加,利用這個規(guī)律即可得到所求拋物線的頂點坐標,然后就可以求出拋物線的解析式.【詳解】解:∵y=x2-4x-5=x2-4x+4-9=(x-2)2-9,∴頂點坐標為(2,-9),∴由點的平移可知:向左平移2個單位,再向上平移3個單位,得(1,-2),則原二次函數(shù)y=ax2+bx+c的頂點坐標為(1,-2),∵平移不改變a的值,∴a=1,∴原二次函數(shù)y=ax2+bx+c=x2-2,∴b=1,c=-2.故選:C.【點睛】此題主要考查了二次函數(shù)圖象與平移變換,首先根據(jù)平移規(guī)律求出已知拋物線的頂點坐標,然后求出所求拋物線的頂點坐標,最后就可以求出原二次函數(shù)的解析式.7、D【詳解】∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.8、B【解析】試題分析:觀察圖象可知,拋物線y=x2+bx+c與x軸的交點的橫坐標分別為(﹣1,0)、(1,0),所以當y<0時,x的取值范圍正好在兩交點之間,即﹣1<x<1.故選B.考點:二次函數(shù)的圖象.1061449、A【分析】設△OAB的邊長為2a,根據(jù)等邊三角形的性質,可得點B的坐標為(-a,a),代入反比例函數(shù)解析式可得出a的值,繼而得出△OAB的周長.【詳解】解:如圖,設△OAB的邊長為2a,過B點作BM⊥x軸于點M.
又∵△OAB是等邊三角形,
∴OM=OA=a,BM=a,
∴點B的坐標為(-a,a),
∵點B是反比例函數(shù)y=?圖象上的點,
∴-a?a=-8,
解得a=±2(負值舍去),
∴△OAB的周長為:3×2a=6a=12.
故選:A.【點睛】此題考查反比例函數(shù)圖象上點的坐標特征,等邊三角形的性質,設△OAB的邊長為2a,用含a的代數(shù)式表示出點B的坐標是解題的關鍵.10、C【分析】直接利用概率公式求解即可求得答案.【詳解】解:∵在一個不透明的口袋中裝有5個完全相同的小球,把它們分別標號為1,2,3,4,5,
其中小于的3個,∴從中隨機摸出一個小球,其標號小于4的概率為:故選:C.【點睛】此題考查了概率公式的應用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.11、D【分析】當時,是拋物線的頂點,代入求出頂點坐標即可.【詳解】由題意得,當時,是拋物線的頂點代入到拋物線方程中∴頂點的坐標為故答案為:D.【點睛】本題考查了拋物線的頂點坐標問題,掌握求二次函數(shù)頂點的方法是解題的關鍵.12、A【分析】由可得∠APB=90°,根據(jù)AB是定長,由定長對定角可知P點的運動軌跡是以AB為直徑,在AB上方的半圓,取AB得中點為O,連結DO,DO與半圓的交點是DP的長為最小值時的位置,用DO減去圓的半徑即可得出最小值.【詳解】解:∵,∴∠APB=90°,∵AB=6是定長,則P點的運動軌跡是以AB為直徑,在AB上方的半圓,取AB得中點為O,連結DO,DO與半圓的交點是DP的長為最小值時的位置,如圖所示:∵,,∴,由勾股定理得:DO=5,∴,即的長的最小值為2,故選A.【點睛】本題屬于綜合難題,主要考查了直徑所對的角是圓周角的應用:由定弦對定角可得動點的軌跡是圓,發(fā)現(xiàn)定弦和定角是解題的關鍵.二、填空題(每題4分,共24分)13、18cm.【分析】由一個三角形的三邊之比為3:6:4,可得與它相似的三角形的三邊之比為3:6:4,又由與它相似的三角形的周長為39cm,即可求得答案.【詳解】解:∵一個三角形的三邊之比為3:6:4,∴與它相似的三角形的三邊之比為3:6:4,∵與它相似的三角形的周長為39cm,∴與它相似的三角形的最長邊為:39×=18(cm).
故答案為:18cm.【點睛】此題考查了相似三角形的性質.此題比較簡單,注意相似三角形的對應邊成比例.14、3.2【分析】先利用勾股定理求出AC,設,依題意得,故,易證,得到,再在中利用勾股定理解出,又得,列出方程解方程得到x,即可得到AD【詳解】在中利用勾股定理求出,設,依題意得,故.由求出,再在中,利用勾股定理求出,然后由得,即,解得,從而.【點睛】本題考查勾股定理與相似三角形,解題關鍵在于靈活運用兩者進行線段替換15、x(x+2)(x-6).【分析】因式分解的步驟:先提公因式,再利用其它方法分解,注意分解要徹底.首先提取公因式x,然后利用十字相乘法求解,【詳解】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).【點睛】本題考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正確計算是本題的解題關鍵.16、2.【分析】把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為2.【點睛】本題考查了求代數(shù)式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.17、-1【分析】根據(jù)坐標的對稱性求出m,n的值,故可求解.【詳解】依題意得m=-3,n=2∴=故填:-1.【點睛】此題主要考查代數(shù)式求值,解題的關鍵是熟知直角坐標系的坐標特點.18、【分析】延長GE交AB于點O,作PH⊥OE于點H,則PH是△OAE的中位線,求得PH的長和HG的長,在Rt△PGH中利用勾股定理求解.【詳解】解:延長GE交AB于點O,作PH⊥OE于點H.
則PH∥AB.
∵P是AE的中點,
∴PH是△AOE的中位線,
∴PH=OA=×(3-1)=1.
∵直角△AOE中,∠OAE=45°,
∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.
∴在Rt△PHG中,PG=故答案是:.【點睛】本題考查了正方形的性質、勾股定理和三角形的中位線定理,正確作出輔助線構造直角三角形是關鍵.三、解答題(共78分)19、(1)y=;(2)見解析;(3)見解析【分析】(1)將x=1,y=6代入反比例函數(shù)解析式即可得出答案;(2)根據(jù)(1)求出的解析式分別代入表中已知的數(shù)據(jù)求解即可得出答案;(3)根據(jù)(2)中給出的數(shù)據(jù)描點連線即可得出答案.【詳解】解:(1)∵y是x的反比例函數(shù)∴設y=∵當x=1時,y=6∴6=k∴這個反比例函數(shù)的表達式為.(2)完成表格如下:x…-32…y…-1.5-3-621.5…(3)這個反比例函數(shù)的圖象如圖:【點睛】本題考查的是反比例函數(shù),比較簡單,需要熟練掌握畫函數(shù)圖像的方法.20、(1)x1=3,x2=﹣1;(2)1﹣【分析】(1)利用因式分解法解方程即可;(2)根據(jù)特殊角的三角函數(shù)值計算即可.【詳解】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.(2)原式=×1+×﹣2××2×=+1﹣=1﹣【點睛】此題考查的是解一元二次方程和特殊角的銳角三角函數(shù)值,掌握用因式分解法解一元二次方程和各個特殊角的銳角三角函數(shù)值是解決此題的關鍵.21、(1)與之間的距離為200海里,與之間的距離為海里;(2)巡邏船沿直線航線,在去營救的途中沒有觸暗礁危險.【分析】(1)作CE⊥AB于E,設AE=x海里,則海里.根據(jù),求得x的值后即可求得AC的長,過點D作DF⊥AC于點F,同理求出AD的長;(2)根據(jù)(1)中的結論得出DF的長,再與100比較即可得到答案.【詳解】解:(1)如圖,過點作于,設海里,過點作于點,設海里,由題意得:,,在中,,在中,.∴,解得:,∴.在中,,則.則.∴,解得:,∴AD=2y=答:與之間的距離為200海里,與之間的距離為海里.(2)由(1)可知,,≈1.3(海里),∵,∴巡邏船沿直線航線,在去營救的途中沒有觸暗礁危險.【點睛】本題考查的是解直角三角形的應用——方向角問題,能根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.22、(1),;(2)【分析】(1)先提取公因式分解因式分為兩個一元一次方程解出即可得到答案;(2)先計算特殊角的三角函數(shù)值,再計算加減即可.【詳解】(1)解:,∴或,∴,.(2)解:原式.【點睛】本題考查了解一元二次方程-因式分解法、特殊角的三角函數(shù)值的混合運算,熟記特殊角的三角函數(shù)值是解題的關鍵,注意不要混淆各特殊角的三角函數(shù)值.23、(1)見解析;(2)
當∠GBC=30°時,四邊形GCFD是正方形.證明見解析;(3)當∠GBC=120°時,以點,,,為頂點的四邊形CGFD是矩形.證明見解析.【分析】(1)先證明四邊形是平行四邊形,再通過證明得出,從而證明四邊形是菱形;(2)證法一:如圖,連接交于,在上取一點,使得,通過證明,,,從而證明當∠GBC=30°時,四邊形GCFD是正方形;證法二:如圖,過點G作GH⊥BC于H,通過證明OD=OC=OG=OF,GF=CD,從而證明當∠GBC=30°時,四邊形GCFD是正方形;(3)
當∠GBC=120°時,點E與點A重合,通過證明,CD=GF,,從而證明四邊形是矩形.【詳解】(1),,四邊形是平行四邊形,在和中,,,四邊形是菱形.(2)
當∠GBC=30°時,四邊形GCFD是正方形.證法一:如圖,連接交于,在上取一點,使得,,,,,,,.,,,,,,,,設,則,,
在Rt△BGK中,,解得,
,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,四邊形是正方形.證法二:如圖∵,,.又,,,.過點G作GH⊥BC于H,在Rt△BHG中,∵,∴GH=BG=+1,BH=GH=3+,∴HC=BC﹣BH=2+2-(3+)=-1,∴GC=,∴OG=OC===2,∴OD=OF=4-2=2,∴OD=OC=OG=OF,四邊形是矩形,∵GF=CD,四邊形是正方形.(3)當∠GBC=120°時,以點,,,為頂點的四邊形CGFD是矩形.
當∠GBC=120°時,點E與點A重合.,∴,.
∵四邊形ABCD和四邊形GBEF是平行四邊形,∴,,AB=CD,AB=GF,∴,CD=GF,
四邊形是平行四邊形.∵,四邊形是矩形.【點睛】本題考查了幾何的綜合應用題,掌握矩形和正方形的性質以及判定、勾股定理、全等三角形的判定是解題的關鍵.24、(1);(2)【分析】(1)根據(jù)垂徑定理得到,根據(jù)圓周角定理解答;(2)根據(jù)圓周角定理得到∠C=90°,根據(jù)等腰三角形的性質得到∠A=∠AEC=30°,根據(jù)余弦的定義求出AE即可.【詳解】(1)連接.∵,∴,∴,∵,∴.(2)∵是的直徑,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,連接AC∵是的直徑,∴,∴,即解得AE=∴,∴的半徑為.【點睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關系及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度豪華酒店建筑工程施工總承包合同2篇
- 二零二五年度安置房項目環(huán)保驗收合同6篇
- 二零二五年海洋平臺用鋼板租賃服務協(xié)議3篇
- 二零二五年度高等教育機構教師聘期管理勞動合同范本3篇
- 二零二五年食品安全生產(chǎn)責任賠償合同3篇
- 武漢工貿(mào)職業(yè)學院《珠寶商務》2023-2024學年第一學期期末試卷
- 二零二五年度智能安防產(chǎn)品集成與調(diào)試合同3篇
- 2024銅門制安工程物流服務合同
- 2024版日用百貨購銷合同范本
- 2024版服裝店鋪轉讓協(xié)議書
- 小學四年級數(shù)學知識點總結(必備8篇)
- GB/T 893-2017孔用彈性擋圈
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 醫(yī)學會自律規(guī)范
- 商務溝通第二版第4章書面溝通
- 950項機電安裝施工工藝標準合集(含管線套管、支吊架、風口安裝)
- 微生物學與免疫學-11免疫分子課件
- 《動物遺傳育種學》動物醫(yī)學全套教學課件
- 弱電工程自檢報告
- 民法案例分析教程(第五版)完整版課件全套ppt教學教程最全電子教案
評論
0/150
提交評論