版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°2.若將拋物線的函數(shù)圖象先向右平移1個單位,再向下平移2個單位后,可得到一個新的拋物線的圖象,則所得到的新的拋物線的解析式為()A. B.C. D.3.數(shù)據(jù)3,1,x,4,5,2的眾數(shù)與平均數(shù)相等,則x的值是()A.2 B.3 C.4 D.54.如圖,等邊△ABC中,點D、E、F分別是AB、AC、BC中點,點M在CB的延長線上,△DMN為等邊三角形,且EN經(jīng)過F點.下列結(jié)論:①EN=MF②MB=FN③MP·DP=NP·FP④MB·BP=PF·FC,正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個5.把拋物線先向左平移個單位,再向下平移個單位,得到的拋物線的表達式是()A. B.C. D.6.在平面直角坐標系中,點,,過第四象限內(nèi)一動點作軸的垂線,垂足為,且,點、分別在線段和軸上運動,則的最小值是()A. B. C. D.7.已知拋物線具有如下性質(zhì):拋物線上任意一點到定點的距離與到軸的距離相等.如圖點的坐標為,是拋物線上一動點,則周長的最小值是()A. B. C. D.8.如圖,在△ABC中,AD=AC,延長CD至B,使BD=CD,DE⊥BC交AB于點E,EC交AD于點F.下列四個結(jié)論:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,則DF=1.其中正確的個數(shù)有()A.1 B.2 C.1 D.49.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.等邊三角形 B.平行四邊形 C.矩形 D.正五邊形10.甲、乙、丙三名射擊運動員在某場測試中各射擊20次,3人的測試成績?nèi)缦卤恚畡t甲、乙、丙3名運動員測試成績最穩(wěn)定的是()甲的成績乙的成績丙的成績環(huán)數(shù)78910環(huán)數(shù)78910環(huán)數(shù)78910頻數(shù)4664頻數(shù)6446頻數(shù)5555A.甲 B.乙 C.丙 D.3人成績穩(wěn)定情況相同11.如圖,已知二次函數(shù)()的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結(jié)論:①當x>3時,y<0;②3a+b<0;③;④;其中正確的結(jié)論是()A.①③④ B.①②③ C.①②④ D.①②③④12.如圖,在矩形中,在上,,交于,連結(jié),則圖中與一定相似的三角形是A. B. C. D.和二、填空題(每題4分,共24分)13.在銳角△ABC中,若sinA=,則∠A=_______°14.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.15.如圖是一個圓環(huán)形黃花梨木擺件的殘片,為求其外圓半徑,小林在外圓上任取一點A,然后過點A作AB與殘片的內(nèi)圓相切于點D,作CD⊥AB交外圓于點C,測得CD=15cm,AB=60cm,則這個擺件的外圓半徑是_____cm.16.在中,,,在外有一點,且,則的度數(shù)是__________.17.如圖,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A與BC相切于點D,且交AB,AC于M,N兩點,則圖中陰影部分的面積是_____(保留π).18.如圖,將的斜邊AB繞點A順時針旋轉(zhuǎn)得到AE,直角邊AC繞點A逆時針旋轉(zhuǎn)得到AF,連結(jié)EF.若,,且,則_____.三、解答題(共78分)19.(8分)如圖,在正方形ABCD中,,點E為對角線AC上一動點(點E不與點A、C重合),連接DE,過點E作,交BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.(1)求AC的長;(2)求證矩形DEFG是正方形;(3)探究:的值是否為定值?若是,請求出這個定值;若不是,請說明理由.20.(8分)已知為的外接圓,點是的內(nèi)心,的延長線交于點,交于點.(1)如圖1,求證:.(2)如圖2,為的直徑.若,求的長.21.(8分)為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.22.(10分)問題發(fā)現(xiàn):(1)如圖1,內(nèi)接于半徑為4的,若,則_______;問題探究:(2)如圖2,四邊形內(nèi)接于半徑為6的,若,求四邊形的面積最大值;解決問題(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準備將這塊空地規(guī)劃為一個公園,主入口在點處,另外三個入口分別在點、、處,其中點在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.23.(10分)如圖,平面直角坐標中,把矩形OABC沿對角線OB所在的直線折疊,點A落在點D處,OD與BC交于點E.OA、OC的長是關于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC).(1)求A、C的坐標.(2)直接寫出點E的坐標,并求出過點A、E的直線函數(shù)關系式.(3)點F是x軸上一點,在坐標平面內(nèi)是否存在點P,使以點O、B、P、F為頂點的四邊形為菱形?若存在請直接寫出P點坐標;若不存在,請說明理由.24.(10分)某商場將進貨單價為30元的商品以每個40元的價格售出時,平均每月能售出600個,調(diào)查表明:這種商品的售價每上漲1元,其銷售量就減少10個.(1)為了使平均每月有10000元的銷售利潤且盡快售出,這種商品的售價應定為每個多少元?(2)當該商品的售價為每個多少元時,商場銷售該商品的平均月利潤最大?最大利潤是多少?25.(12分)如圖,點是的內(nèi)心,的延長線交于點,交的外接圓于點,連接,過點作直線,使;(1)求證:直線是的切線;(2)若,,求.26.解方程:(1)3x(x-2)=4(x-2);(2)2x2-4x+1=0
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B2、C【分析】根據(jù)函數(shù)圖象平移的法則“左加右減,上加下減”的原則進行解答即可.【詳解】由“左加右減”的原則可知,將拋物線先向右平移1個單位可得到拋物線;由“上加下減”的原則可知,將拋物線先向下平移2個單位可得到拋物線.
故選:C.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.3、B【分析】先根據(jù)平均數(shù)的計算方法求出平均數(shù),根據(jù)眾數(shù)的確定方法判斷出眾數(shù)可能值,最后根據(jù)眾數(shù)和平均數(shù)相等,即可得出結(jié)論.【詳解】根據(jù)題意得,數(shù)據(jù)3,1,x,4,5,2的平均數(shù)為(3+1+x+4+5+2)÷6=(15+x)÷6=2+,數(shù)據(jù)3,1,x,4,5,2的眾數(shù)為1或2或3或4或5,∴x=1或2或3或4或5,∵數(shù)據(jù)3,1,x,4,5,2的眾數(shù)與平均數(shù)相等,∴2+=1或2或3或4或5,∴x=﹣9或﹣3或3或9或15,∴x=3,故選:B.【點睛】此題主要考查了眾數(shù)的確定方法,平均數(shù)的計算方法,解一元一次方程,掌握平均數(shù)的求法是解本題的關鍵.4、C【分析】①連接DE、DF,根據(jù)等邊三角形的性質(zhì)得到∠MDF=∠NDE,證明△DMF≌△DNE,根據(jù)全等三角形的性質(zhì)證明;②根據(jù)①的結(jié)論結(jié)合點D、E、F分別是AB、AC、BC中點,即可得證;③根據(jù)題目中的條件易證得,即可得證;④根據(jù)題目中的條件易證得,再則等量代換,即可得證.【詳解】連接,
∵和為等邊三角形,
∴,,
∵點分別為邊的中點,
∴是等邊三角形,∴,,
∵∴,
在和中,,
∴,
∴,故①正確;∵點分別為等邊三角形三邊的中點,
∴四邊形為菱形,∴,∵,∴,故②正確;∵點分別為等邊三角形三邊的中點,∴∥,∴,∵為等邊三角形,∴,又∵,∴,∴,∴,故③錯誤;∵點分別為等邊三角形三邊的中點,∴∥,,∴,∴,由②得,∴,∴,故④正確;綜上:①②④共3個正確.故選:C【點睛】本題考查的是等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理結(jié)合等量代換是解題的關鍵.5、B【分析】先求出平移后的拋物線的頂點坐標,再利用頂點式拋物線解析式寫出即可.【詳解】解:拋物線y=-x1的頂點坐標為(0,0),
先向左平移1個單位再向下平移1個單位后的拋物線的頂點坐標為(-1,-1),
所以,平移后的拋物線的解析式為y=-(x+1)1-1.
故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用根據(jù)規(guī)律利用點的變化確定函數(shù)解析式.6、B【分析】先求出直線AB的解析式,再根據(jù)已知條件求出點C的運動軌跡,由一次函數(shù)的圖像及性質(zhì)可知:點C的運動軌跡和直線AB平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,然后利用銳角三角函數(shù)求MN即可求出CE.【詳解】解:設直線AB的解析式為y=ax+b(a≠0)將點,代入解析式,得解得:∴直線AB的解析式為設C點坐標為(x,y)∴CD=x,OD=-y∵∴整理可得:,即點C的運動軌跡為直線的一部分由一次函數(shù)的性質(zhì)可知:直線和直線平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,如圖所示在Rt△AOB中,AB=,sin∠BAO=在Rt△AMN中,AM=6,sin∠MAN=∴CE=MN=,即的最小值是.故選:B.【點睛】此題考查的是一次函數(shù)的圖像及性質(zhì)、動點問題和解直角三角形,掌握用待定系數(shù)法求一次函數(shù)的解析式、一次函數(shù)的圖像及性質(zhì)、垂線段最短和平行線之間的距離處處相等是解決此題的關鍵.7、C【分析】作過作軸于點,過點作軸于點,交拋物線于點,由結(jié)合,結(jié)合點到直線之間垂線段最短及MF為定值,即可得出當點P運動到點P′時,△PMF周長取最小值,再由點、的坐標即可得出、的長度,進而得出周長的最小值.【詳解】解:作過作軸于點,由題意可知:,∴周長=,又∵點到直線之間垂線段最短,∴當、、三點共線時最小,此時周長取最小值,過點作軸于點,交拋物線于點,此時周長最小值,、,,,周長的最小值.故選:.【點睛】本題考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征以及點到直線的距離,根據(jù)點到直線之間垂線段最短找出△PMF周長的取最小值時點P的位置是解題的關鍵.8、C【分析】根據(jù)垂直平分線的性質(zhì)可證①;②是錯誤的;推導出2組角相等可證△ABC∽△FCD,從而判斷③;根據(jù)△ABC∽△FCD可推導出④.【詳解】∵BD=CD,DE⊥BC∴ED是BC的垂直平分線∴EB=EC,△EBC是等腰三角形,①正確∴∠B=∠FCD∵AD=AC∴∠ACB=∠FDC∴△ABC∽△FCD,③正確∴∵AC=6,∴DF=1,④正確②是錯誤的故選:C【點睛】本題考查等腰三角形的性質(zhì)和相似的證明求解,解題關鍵是推導出三角形EBC是等腰三角形.9、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.詳解:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤;B、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形.故錯誤;C、是軸對稱圖形,又是中心對稱圖形.故正確;D、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤.故選C.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,根據(jù)定義得出圖形形狀是解決問題的關鍵.10、A【分析】先算出甲、乙、丙三人的方差,比較方差得出最穩(wěn)定的人選.【詳解】由表格得:甲的平均數(shù)=甲的方差=同理可得:乙的平均數(shù)為:8.5,乙的方差為:1.45丙的平均數(shù)為:8.5,乙的方差為:1.25∴甲的方差最小,即甲最穩(wěn)定故選:A【點睛】本題考查根據(jù)方差得出結(jié)論,解題關鍵是分別求解出甲、乙、丙的方差,比較即可.11、B【分析】①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,1),當x>3時,y<1,故①正確;②拋物線開口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正確;③設拋物線的解析式為y=a(x+1)(x﹣3),則,令x=1得:y=﹣3a.∵拋物線與y軸的交點B在(1,2)和(1,3)之間,∴.解得:,故③正確;④.∵拋物線y軸的交點B在(1,2)和(1,3)之間,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,與2≤c≤3矛盾,故④錯誤.【詳解】解:①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,1),當x>3時,y<1,故①正確;②拋物線開口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正確;③設拋物線的解析式為y=a(x+1)(x﹣3),則,令x=1得:y=﹣3a.∵拋物線與y軸的交點B在(1,2)和(1,3)之間,∴.解得:,故③正確;④.∵拋物線y軸的交點B在(1,2)和(1,3)之間,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,與2≤c≤3矛盾,故④錯誤.故選B.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關系,結(jié)合圖像,數(shù)形結(jié)合的思想的運用是本題的解題關鍵..12、B【解析】試題分析:根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再由根據(jù)同角的余角相等可得∠AEB=∠DFE,即可得到結(jié)果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故選B.考點:矩形的性質(zhì),相似三角形的判定點評:相似三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中半徑常見的知識點,一般難度不大,需熟練掌握.二、填空題(每題4分,共24分)13、30°【分析】由題意直接利用特殊銳角三角函數(shù)值即可求得答案.【詳解】解:因為sin30°=,且△ABC是銳角三角形,所以∠A=30°.故填:30°.【點睛】本題考查特殊銳角三角函數(shù)值,熟記特殊銳角三角函數(shù)值是解題的關鍵.14、1.【解析】分析:根據(jù)同一時刻物高與影長成比例,列出比例式再代入數(shù)據(jù)計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應用,解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立數(shù)學模型來解決問題.15、37.1【分析】根據(jù)垂徑定理求得AD=30cm,然后根據(jù)勾股定理得出方程,解方程即可求得半徑.【詳解】如圖,設點O為外圓的圓心,連接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴設半徑為rcm,則OD=(r﹣11)cm,根據(jù)題意得:r2=(r﹣11)2+302,解得:r=37.1,∴這個擺件的外圓半徑長為37.1cm,故答案為37.1.【點睛】本題考查了垂徑定理的應用以及勾股定理的應用,作出輔助線構(gòu)建直角三角形是解本題的關鍵.16、、【分析】由,可知A、C、B、M四點共圓,AB為圓的直徑,則是弦AC所對的圓周角,此時需要對M點的位置進行分類討論,點M分別在直線AC的兩側(cè)時,根據(jù)同弧所對的圓周角相等和圓內(nèi)接四邊形對角互補可得兩種結(jié)果.【詳解】解:∵在中,,,∴∠BAC=∠ACB=45°,∵點在外,且,即∠AMB=90°∵∴A、C、B、M四點共圓,①如圖,當點M在直線AC的左側(cè)時,,∴;②如圖,當點M在直線AC的右側(cè)時,∵,∴,故答案為:135°或45°.【點睛】本題考查了圓內(nèi)接四邊形對角互補和同弧所對的角相等,但解題的關鍵是要先根據(jù)題意判斷出A、C、B、M四點共圓.17、4.【分析】連接AD,分別求出△ABC和扇形AMN的面積,相減即可得出答案.【詳解】解:連接AD,∵⊙A與BC相切于點D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面積=,扇形MAN得面積=,∴陰影部分的面積=.故答案為:.【點睛】本題考查的是圓中求陰影部分的面積,解題關鍵在于知道陰影部分面積等于三角形ABC的面積減去扇形AMN的面積,要求牢記三角形面積和扇形面積的計算公式.18、【分析】由旋轉(zhuǎn)的性質(zhì)可得,,由勾股定理可求EF的長.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得,,,且,故答案為【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,靈活運用旋轉(zhuǎn)的性質(zhì)是本題的關鍵.三、解答題(共78分)19、(1)2;(2)見解析;(3)是,定值為8【分析】(1)運用勾股定理直接計算即可;(2)過作于點,過作于點,即可得到,然后判斷,得到,則有即可;(3)同(2)的方法證出得到,得出即可.【詳解】解:(1),∴AC的長為2;(2)如圖所示,過作于點,過作于點,正方形,,,,且,四邊形為正方形,四邊形是矩形,,,,又,在和中,,,,矩形為正方形,(3)的值為定值,理由如下:矩形為正方形,,,四邊形是正方形,,,,在和中,,,,,是定值.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),矩形的性質(zhì)與判定,三角形的全等的性質(zhì)和判定,勾股定理的綜合運用,解本題的關鍵是作出輔助線,構(gòu)造三角形全等,利用全等三角形的對應邊相等得出結(jié)論。20、(1)證明見解析;(2)【分析】(1)連接半徑,根據(jù)內(nèi)心的性質(zhì)、圓的基本性質(zhì)以及三角形外角的性質(zhì)求得,即可得證結(jié)論;(2)連接半徑,由為的直徑、點是的內(nèi)心以及等腰三角形的三線合一可得、,然后依次解、即可得出結(jié)論.【詳解】解:(1)證明:連接,如圖:∵是的內(nèi)心∴,∵∴∴∵∴(2)連接,如圖:∵是直徑,平分∴且∵,,∴在中,∴∴∵∴∴在中,∴由(1)可知,∴.故答案是:(1)證明見解析;(2)【點睛】本題考查了三角形內(nèi)心的性質(zhì)、圓的一些基本性質(zhì)、三角形外角的性質(zhì)、等腰三角形的性質(zhì)、垂徑定理、銳角三角函數(shù)以及勾股定理等知識點,難度不大,屬于中檔題型.21、(1);(2)【分析】(1)直接根據(jù)概率公式計算可得;(2)畫樹狀圖得出所有等可能結(jié)果,再從中找到符合條件的結(jié)果數(shù),利用概率公式計算可得.【詳解】解:(1)因為有,,種等可能結(jié)果,所以八(1)班抽中歌曲《我和我的祖國》的概率是;故答案為.(2)樹狀圖如圖所示:共有9種可能,八(1)班和八(2)班抽中不同歌曲的概率.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果,22、(1);(2)四邊形ABCD的面積最大值是;(3)存在,其最大值為.【分析】(1)連接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根據(jù)OA=4,利用余弦公式求出AH,即可得到AB的長;(2)連接AC,由得出AC=,再根據(jù)四邊形的面積=,當DH+BM最大時,四邊形ABCD的面積最大,得到BD是直徑,再將AC、BD的值代入求出四邊形面積的最大值即可;(3)先證明△ADM≌△BMC,得到△CDM是等邊三角形,求得等邊三角形的邊長CD,再根據(jù)完全平方公式的關系得出PD=PC時PD+PC最大,根據(jù)CD、∠DPC求出PD,即可得到四邊形周長的最大值.【詳解】(1)連接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案為:.(2)∵∠ABC=120,四邊形ABCD內(nèi)接于,∴∠ADC=60,∵的半徑為6,∴由(1)得AC=,如圖,連接AC,作DH⊥AC,BM⊥AC,∴四邊形的面積=,當DH+BM最大時,四邊形ABCD的面積最大,連接BD,則BD是的直徑,∴BD=2OA=12,BD⊥AC,∴四邊形的面積=.∴四邊形ABCD的面積最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等邊三角形,∴C、D、M三點共圓,∵點P在弧CD上,∴C、D、M、P四點共圓,∴∠DPC=180-∠DMC=120,∵弧的半徑為1千米,∠DMC=60,∴CD=,∵,∴,∴,∴當PD=PC時,PD+PC最大,此時點P在弧CD的中點,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四邊形的周長最大值=DM+CM+DP+CP=.【點睛】此題是一道綜合題,考查圓的性質(zhì),垂徑定理,三角函數(shù),三角形全等的判定及性質(zhì),動點最大值等知識點.(1)中問題發(fā)現(xiàn)的結(jié)論應用很主要,理解題意在(2)、(3)中應用解題,(3)的PD+PC最大值的確定是難點,注意與所學知識的結(jié)合才能更好的解題.23、(1)A(6,0),C(0,3);(2)E(,3),y=﹣x+;(3)滿足條件的點P坐標為(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【解析】(1)解方程求出OA、OC的長即可解決問題;
(2)首先證明EO=EB,設EO=EB=x,在Rt△ECO中,EO2=OC2+CE2,構(gòu)建方程求出x,可得點E坐標,再利用待定系數(shù)法即可解決問題;
(3)分情形分別求解即可解決問題;【詳解】(1)由x2﹣9x+18=0可得x=3或6,∵OA、OC的長是關于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC),∴OA=6,OC=3,∴A(6,0),C(0,3).(2)如圖1中,∵OA∥BC,∴∠EBC=∠AOB,根據(jù)翻折不變性可知:∠EOB=∠AOB,∴∠EOB=∠EBO,∴EO=EB,設EO=EB=x,在Rt△ECO中,∵EO2=OC2+CE2,∴x2=32+(6﹣x)2,解得x=,∴CE=BC﹣EB=6﹣=,∴E(,3),設直線AE的解析式為y=kx+b,則有,解得,∴直線AE的函數(shù)解析式為y=﹣x+.(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年預購商品房合同3篇
- 2025年度oem服裝加工與品牌授權合同范本3篇
- 2024年標準版商品交易協(xié)議書版B版
- 2024年金融教育與普及項目合同3篇
- 2025年度特色餐廳品牌授權合作協(xié)議3篇
- 2024幼兒園清潔服務租賃合同
- 2024年離婚協(xié)議書規(guī)范格式3篇
- 2024年礦石物流承運協(xié)議標準模板版B版
- 2024購房合同樣書
- 2024年高頻交易系統(tǒng)開發(fā)與授權合同
- 2024年七年級語文上學期期末作文題目及范文匯編
- 云南省昆明市五華區(qū)2023-2024學年九年級上學期期末英語試卷+
- 2023年生產(chǎn)運營副總經(jīng)理年度總結(jié)及下一年計劃
- 2023年中考語文標點符號(頓號)練習(含答案)
- 施工圖審查招標文件范文
- 新課標人教版數(shù)學三年級上冊第八單元《分數(shù)的初步認識》教材解讀
- (人教版2019)數(shù)學必修第一冊 第三章 函數(shù)的概念與性質(zhì) 復習課件
- 布袋式除塵器制造工序檢驗規(guī)定
- 艾滋病、梅毒和乙肝檢測方法介紹及選擇
- 水資源稅納稅申報表附表
- MF47萬用表組裝與檢測教學教案
評論
0/150
提交評論