版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年成都市青羊區(qū)中考四模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.計算的結果是()A.1 B.-1 C. D.2.“遼寧號”航母是中國海軍航空母艦的首艦,標準排水量57000噸,滿載排水量67500噸,數據67500用科學記數法表示為A.675×102 B.67.5×102 C.6.75×104 D.6.75×1053.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.4.甲隊修路120m與乙隊修路100m所用天數相同,已知甲隊比乙隊每天多修10m,設甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.5.如圖,若數軸上的點A,B分別與實數﹣1,1對應,用圓規(guī)在數軸上畫點C,則與點C對應的實數是()A.2 B.3 C.4 D.56.如圖,按照三視圖確定該幾何體的側面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm27.下列四個數表示在數軸上,它們對應的點中,離原點最遠的是()A.﹣2 B.﹣1 C.0 D.18.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.9.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=010.一元二次方程mx2+mx﹣=0有兩個相等實數根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.211.已知正方形ABCD的邊長為4cm,動點P從A出發(fā),沿AD邊以1cm/s的速度運動,動點Q從B出發(fā),沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發(fā),運動到點D均停止運動,設運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數圖象大致是()A. B. C. D.12.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數y=的圖象經過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.14.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.15.化簡的結果是_______________.16.已知拋物線y=x2-x-1與x軸的一個交點為(m,0),則代數式m2-m+2017的值為____.17.用換元法解方程,設y=,那么原方程化為關于y的整式方程是_____.18.如果點、是二次函數是常數圖象上的兩點,那么______填“”、“”或“”三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知A=ab(a-b)-ba(a-b).化簡A;如果a、b20.(6分)已知關于x,y的二元一次方程組的解為,求a、b的值.21.(6分)如圖所示,內接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.22.(8分)如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標.23.(8分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(取)運動員乙要搶到第二個落點,他應再向前跑多少米?24.(10分)為上標保障我國海外維和部隊官兵的生活,現需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調配方案.25.(10分)如圖,在直角坐標系中△ABC的A、B、C三點坐標A(7,1)、B(8,2)、C(9,0).(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點一側),畫出△A′B′C′關于y軸對稱的△A′'B′'C′';(2)寫出點A'的坐標.26.(12分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.27.(12分)在一個不透明的盒子里,裝有三個分別寫有數字6,-2,7的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數字后放回盒子,搖勻后再隨機取出一個小球,記下數字.請你用畫樹狀圖的方法,求下列事件的概率:兩次取出小球上的數字相同;兩次取出小球上的數字之和大于1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.2、C【解析】
根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).【詳解】67500一共5位,從而67500=6.75×104,故選C.3、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D4、A【解析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數相同,所以,。故選A。5、B【解析】
由數軸上的點A、B分別與實數﹣1,1對應,即可求得AB=2,再根據半徑相等得到BC=2,由此即求得點C對應的實數.【詳解】∵數軸上的點A,B分別與實數﹣1,1對應,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應的實數是:1+2=3.故選B.【點睛】本題考查了實數與數軸,熟記實數與數軸上的點是一一對應的關系是解決本題的關鍵.6、A【解析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側面積=πrl=π×6×4=14πcm1.故選:A.【點睛】此題考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.7、A【解析】
由于要求四個數的點中距離原點最遠的點,所以求這四個點對應的實數絕對值即可求解.【詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個數表示在數軸上,它們對應的點中,離原點最遠的是-1.故選A.【點睛】本題考查了實數與數軸的對應關系,以及估算無理數大小的能力,也利用了數形結合的思想.8、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.9、D【解析】試題解析:含有兩個未知數,不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數,未知數的最高次數是2,整式方程.10、C【解析】
由方程有兩個相等的實數根,得到根的判別式等于0,求出m的值,經檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數根;根的判別式的值等于0,方程有兩個相等的實數根;根的判別式的值小于0,方程沒有實數根.11、B【解析】
根據題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當0≤x≤2時,BQ=2x當2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側時形成的不同圖形,并要根據圖形列出函數關系式.12、C【解析】
①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標的性質、三角形的面積求法、相似三角形的性質和判定、平行線等分線段定理、函數圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數形結合的數學思想方法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣24【解析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標為,這樣由點C在反比例函數的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標為,∵點C在反比例函數的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設CF=4x,結合已知條件把OF和OA用含x的式子表達出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.14、【解析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案為.15、【解析】
先將分式進行通分,即可進行運算.【詳解】=-=【點睛】此題主要考查分式的加減,解題的關鍵是先將它們通分.16、1【解析】
把點(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【詳解】∵二次函數y=x2﹣x﹣1的圖象與x軸的一個交點為(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案為:1.【點睛】本題考查了拋物線與x軸的交點問題,求代數式的值的應用,解答此題的關鍵是求出m2﹣m=1,難度適中.17、6y2-5y+2=0【解析】
根據y=,將方程變形即可.【詳解】根據題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【點睛】此題考查了換元法解分式方程,利用了整體的思想,將方程進行適當的變形是解本題的關鍵.18、【解析】
根據二次函數解析式可知函數圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側的圖象上;接下來,結合二次函數的性質可判斷對稱軸左側圖象的增減性,【詳解】解:二次函數的函數圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點睛】本題考查了二次函數的圖像和數形結合的數學思想.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)a+bab【解析】
(1)先通分,再進行同分母的減法運算,然后約分得到原式=a+b(2)利用根與系數的關系得到a+b=【詳解】解:(1)A==(a+b)(a-b)(2)∵a、b是方程x2∴a+b=4,ab=-1∴A=【點睛】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=020、或【解析】
把代入二元一次方程組得到關于a,b的方程組,經過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,
由①得:a=1+b,
把a=1+b代入②,整理得:
b2+b-2=0,
解得:b=-2或b=1,
把b=-2代入①得:a+2=1,
解得:a=-1,
把b=1代入①得:
a-1=1,
解得:a=2,
即或.【點睛】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.21、(1)見解析;(2)成立;(3)【解析】
(1)根據圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據三角形內角和定理求出即可;(2)根據圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據圓周角定理得:,∴,∴由三角形內角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設,,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質、圓周角定理、勾股定理等知識點,能綜合運用知識點進行推理是解此題的關鍵,綜合性比較強,難度偏大.22、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】
(1)將A(-1,0),B(0,1),C(1,0)三點的坐標代入y=ax2+bx+c,運用待定系數法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運用待定系數法求出直線AB的解析式為y=x+1,則可設P點的坐標為(x,-x2-2x+1),E點的坐標為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據二次函數的性質可知當x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進而得到P點的坐標.【詳解】解:(1)∵拋物線y=ax2+bx+c經過點A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設P點的坐標為(x,﹣x2﹣2x+1),E點的坐標為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當x=﹣時,PE最大,△PDE的周長也最大.當x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點P坐標為(﹣,)時,△PDE的周長最大.【點睛】本題是二次函數的綜合題型,其中涉及到的知識點有運用待定系數法求二次函數、一次函數的解析式,等腰直角三角形的判定與性質,二次函數的性質,三角形的周長,綜合性較強,難度適中.23、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解析】
(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設第一次落地時,拋物線的表達式為由已知:當時即表達式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據題意:(即相當于將拋物線向下平移了2個單位)解得(米).答:他應再向前跑17米.24、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設從甲倉庫運x噸往A港口,根據題意得從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,再由等量關系:總運費=甲倉庫運往A港口的費用+甲倉庫運往B港口的費用+乙倉庫運往A港口的費用+乙倉庫運往B港口的費用列式并化簡,即可得總運費y(元)與x(噸)之間的函數關系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因為所得的函數為一次函數,由增減性可知:y隨x增大而減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年全球及中國固態(tài)陣列行業(yè)市場現狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 商業(yè)廣場砂石配送合同樣本
- 主題酒店裝修制式合同
- 體育用品車輛配送合同
- 互聯網汽車貸款居間合同
- 保健食品項目轉讓居間合同
- 樂器運輸承包合同范本
- 游樂場改造施工人員合同
- 交通運輸居間合同協(xié)議書版
- 宗教場所電梯裝修合同
- 2024年黑龍江廣播電視局事業(yè)單位筆試真題
- 法學專業(yè)本科課程教學課件
- 桁架吊裝驗收要求
- 九宮數獨200題(附答案全)
- 北京市海淀區(qū)2023-2024學年七年級下學期期末數學練習
- 2024年廣西普法考試試題及答案A套
- 早產臨床防治指南(2024版)解讀
- 呼吸衰竭講稿呼吸衰竭的定義
- 安全防護棚搭設檢查驗收表
- 人教版三年級上冊公開課《分數的初步認識-幾分之一》課件
- MOOC 國際商務-暨南大學 中國大學慕課答案
評論
0/150
提交評論